CENTERS FOR DISEASE CONTROL

MORBIDITY AND MORTALITY WEEKIY REPORT March 1986 / Vol. 33 / No. 54

Reported Morbidity \& in the United Stalls.

The annual statistical summary is published as the last issue in each volume of the Morbidity and Mortality Weekly Report by the Centers for Disease Control, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30333.

SUGGESTED CITATION

Centers for Disease Control. Annual summary 1984: reported morbidity and mortality in the United States, Morbidity and Mortality Weekly Report 1986;33(54).

Centers for Disease Control	James O. Mason, M.D., Dr.P.H.
	Director

This report was prepared by:

Epidemiology Program Office . Carl W. Tyler, Jr., M.D.
Michael B. Gregg, M.D.
Deputy Director for Communications

Statistical Services Branch . Donna F. Stroup, Ph.D. Chief

Norma P. Gibbs
Statistical Coordinator
Barbara Panter-Connah
Ruth W. Slade

Statistical Assistants
Thomas P. Whitley, Jr.
Computer Graphics Specialist

Linda Kay McGowan Managing Editor

Patsy H. Hurst Illustrator

Martha S. Mayfield
Lynne McIntyre
Roberta H. Rhodes
Editorial Assistants

Table of Contents

Foreword iii
MMWR Responds to Significant Public Health Events v
History of Morbidity Reporting and
Surveillance in the United States ix
Data Sources x
Part 1
Summaries of Notifiable Diseases in the United States 1
Reported Cases, by Month, 1984 3
Reported Cases, by Geographic Division and Area, 1984 4
Reported Cases, by Age Group, 1984 10
Estimates of the Resident Population of the United States, by Age, Sex, and Race, July 1, 1984 11
Part 2
Statistical Tables, Graphs, Maps, and Narratives for Notifiable Diseases in the United States 13
Part 3
Surveillance Summaries for Non-notifiable Conditions and Subjects of Special Interest 77
Cases Optionally Reported by Certain Areas, 1984 79
Condylomata Acuminata 81
Congenital Malformations 82
Dengue 85
Fluoridation 87
Genital Herpes 90
Homicide 91
Influenza 94
Occupational Hazards 97
Pediatric Nutrition 105
Pelvic Inflammatory Disease (PID) 108
Refugees 110
Reye Syndrome 113
Suicide 114
Years of Potential Life Lost 118
Appendix 121
Index 133
State and Territorial Epidemiologists and State Laboratory Directors Inside Back Cover

Foreword

This volume contains the official statistics for 1984 on the reported occurrence of notifiable diseases in the United States. In addition, it includes selected data for subjects of special interest to the public health community.

Part 1 contains morbidity information for each of 49 currently reportable conditions; tables show the number of cases of notifiable diseases reported to the Centers for Disease Control (CDC) for 1984, as well as the distribution of cases by month, geographic location, and patient age. Part 2 includes additional epidemiologic information for 41 reportable conditions. Part 3 covers 14 other subjects of special interest.

The Appendix includes tables showing numbers of cases of notifiable diseases reported to CDC and the National Office of Vital Statistics for the past 50 years. It also has tables of deaths from specified notifiable diseases and selected non-notifiable conditions and violence reported to the National Center for Health Statistics for the years 1974-1983.

Most of the data for this volume were obtained from annual summary reports or caseinvestigation forms submitted by state and territorial health departments.

The MMWR Responds to Significant Public Health Events

Responsiveness was the watchword of the MMWR in 1984. As events of public health import captured headlines in the lay media, the MMWR was committed to bringing its readers responsible, up-to-date information, often holding the presses to ensure that late-breaking facts could be confirmed and included in releases. AIDS heads the list of the significant public health events chronicled in the MMWR in 1984. Approximately 20% of the issues carried articles on AIDS; topics ranged from treatment recommendations to updates on numbers of patients in different risk categories. Perhaps the most widely publicized information contained in these articles appeared in a July 13 article that began, "Evidence implicates a retrovirus as the etiologic agent of acquired immunodeficiency syndrome (AIDS)" (1). It described the finding of two prototype isolates, T-lymphotropic retrovirus (HTLV-III) and lymphadenopathyassociated virus (LAV), from lymphocytes and lymph node cells of AIDS patients. Preliminary data showed that samples of certain asymptomatic populations at high risk for AIDS (e.g., homosexual males, intravenous-drug users, and hemophiliacs) had a high prevalence of antibody to HTLV-III. While the full import of these findings was not known, the article recommended that prevention measures stress that transmission has been only through intimate sexual contact, sharing of contaminated needles, or, less frequently, transfusion of blood or blood products.

A second AIDS article with particular public health significance concerned hepatitis B vaccine (2). Because the vaccine is made from pooled plasma from individuals antigen-positive for hepatitis B virus, some of whom are also in high-risk groups for AIDS, the vaccine's safety had been questioned. The fear that the immunobiologic agent could transmit AIDS was severely hindering its acceptance. The article offered assurances: the recent discovery of the etiologic agent of AIDS made it possible to check for viral protein and nucleic acid in the purified vaccine product, and if the virus was present, it would be killed by the manufacturing process. Evidence confirmed the lack of AIDS transmission by the vaccine and removed a major impediment to its use.

A single story on Agent Orange engendered much interest (3). In view of the continuing debate about the possible adverse effects of Agent Orange on reproductive outcome, CDC had assessed Vietnam veterans' risk of fathering babies with serious structural birth defects. Babies born with structural defects in the period 1968-1980 were identified through CDC's Metropolitan Atlanta Congenital Defects Program. Control infants were born during the same period and in the same area but had no birth defects. Fathers were assessed as to their opportunity for exposure to Agent Orange and assigned an exposure-opportunity score. The researchers found no evidence that Vietnam veterans had any greater risk than other men of fathering a baby with a structural birth defect. Similarly, there was "little evidence" of different risks for veterans assigned higher scores on the Agent Orange exposure-opportunity index.

A large portion of the 1984 MMWR was devoted to recommendations of the Immunization Practices Advisory Committee (ACIP). In response to concern about the safety of pertussis vaccine, the ACIP issued a statement on contraindications to its use. Also, the ACIP provided its first statement on the use of varicella-zoster immune globulin for preventing chickenpox. Other articles included updated recommendations on the prevention and control of influenza, rubella, and rabies and on use of pneumococcal polysaccharide vaccine.

Another first for the ACIP and MMWR was publication of the supplement "Adult Immunization: Recommendations of the Immunization Practices Advisory Committee" (4). This com-
pendium presents an overview of vaccine-preventable diseases, indications and contraindications for use of immunobiologics for adults, and immunization recommendations for adults in specific age groups and with specific vaccine needs.

Over the past few years, behavorial-risk factors, and particularly the effects of alcohol consumption, have become matters of concern to both the public health community and the population at large. In 1984, the MMWR published statistics from a six-state survey on eight of these factors. Three had to do with alcohol (acute and chronic heavy drinking and drinking and driving). Some of the adverse effects of alcohol and their risk factors were delineated in other major articles. Fetal alcohol syndrome was portrayed both as a known leading cause of mental retardation and birth defects (its prevalence is perhaps 1-2 cases/1,000 births) and as potentially preventable. Alcohol's relationship to traffic fatalities and to homicides, suicides, and unintentional injuries was explored in other articles. An Erie County, New York, study found that over 38\% of traffic-fatality victims were legally intoxicated at the time of death, as were 22% of suicide and 32% of homicide victims. A nationwide study of motor-vehicle-related fatalities among young drivers showed that an alarming 42% of these deaths were alcohol-related.

Recently, work-related diseases and injuries have been of primary public health interest. The National Institute for Occupational Safety and Health (NIOSH) has published a suggested list of the 10 leading work-related diseases and injuries; in 1984, the MMWR published summaries on two of these: occupational cancers (other than lung) and severe occupational traumatic injuries and traumatic deaths. The first article listed selected occupational agents potentially associated with different cancers (5). It pointed out that estimates on the percentage of cancers caused by occupational agents, particularly synthetic ones, ranged from less than 4% to over 20%. The second article indicated that occupational traumatic injuries were responsible for 10,000 deaths each year (6). Occupational trauma is second only to motorvehicle incidents as a cause of unintentional death in the United States. The articles stress the preventability of these two categories of work-related disease and injuries and indicate NIOSH's commitment to documenting their occurrence.

Lung and breast cancer were both major topics in 1984. Several articles pointed to the increase, particularly among women, in respiratory cancers, the vast majority of which are caused by smoking. Lung cancer now equals breast cancer as the leading cause of cancer death among women in several states. It is predicted that this will soon be the case nationwide. One of the most publicized cancer articles involved data from CDC's Cancer and Steroid Hormone Study (7). Investigators reported that (1) use of "high-progestogen" oral contraceptives (OCs) before age 25 does not increase a woman's risk of developing breast cancer before age 37, and (2) use of OCs before the first full-term pregnancy does not increase the risk of developing breast cancer before age 45.

Finally, the weekly MMWR issued news of important infectious disease outbreaks, while at the same time trying to emphasize long-term national health priorities. Included among the major infectious disease stories of the year were the following: the larger-than-normal outbreak of influenza, the ongoing problem of chronic diarrheal illness caused by drinking raw milk, the near demise of measles, and the increasingly frequent reports of gonorrhea due to chromosomally mediated resistant Neisseria gonorrhoeae. These often were found along with articles planned specifically to promote public awareness of major public health threats. The front page of the MMWR was devoted to fetal alcohol syndrome (FAS) during FAS Public Awareness Week, to poisoning among young children during National Poison Prevention Week, and to the impact of policy and procedure changes on hospital days among diabetic
nursing home residents during National Diabetes Month. The final pre-holiday issue carried an article on toy safety and offered guidelines from the U.S. Consumer Product Safety Commission and the Toy Manufacturers of America for selecting and using safe toys.

In a year of fast-breaking medical stories, the 1984 volume of the MMWR reflects the diversity of potentially preventable health events facing the nation. It also shows the responsiveness of CDC and the public health community to these. This issue of the Annual Summary recaps data contained in many of these articles and summarizes other important information about events that affect the nation's health. Together with the weekly MMWR, these summaries give an overview of major public health trends in the United States.

References

1. CDC. Antibodies to a retrovius etiologically associated with acquired immunodeficiency syndrome (AIDS) in populations with increased incidences of the syndrome. MMWR 1984;33:377-9.
2. CDC. Hepatitis B vaccine: evidence confirming lack of AIDS transmission. MMWR 1984;33:685-7.
3. CDC. Vietnam veterans' risks for fathering babies with birth defects. MMWR 1984;33:457-9.
4. CDC. Adult immunization: recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR 1984;33:1S-68S.
5. CDC. Leading work-related diseases and injuries - United States. MMWR 1984;33:125-8.
6. CDC. Leading work-related diseases and injuries - United States. MMWR 1984;33: 213-5.
7. CDC. Oral contraceptive use and the risk of breast cancer in young women. MMWR 1984;33:353-4.

History of Morbidity Reporting and Surveillance in the United States

In 1878, an Act of Congress authorized collection of morbidity reports by the Public Health Service to establish quarantine measures for diseases such as cholera, smallpox, plague, and yellow fever. In 1893, another Act authorized the weekly collection of information from state and municipal authorities throughout the United States, and gradually an increasing number of states submitted monthly and annual summaries to the Public Heath Service. It was not until 1925, however, that all states began to report regularly.

Responsibilities for data collection and analysis were subsequently transferred several times within the Public Health Service. The Communicable Disease Center acquired responsibility for the venereal disease program in 1957, the tuberculosis program in 1960, the collection of data on nationally notifiable diseases in 1961, and the foreign quarantine program in 1967. The changing characteristics of diseases have necessitated modifications in the reporting system and the addition of new diseases.

In 1970, the Communicable Disease Center was renamed the Center for Disease Control (CDC) to reflect a broader mandate in preventive health services. Over the years the surveillance systems maintained by CDC have expanded, and emphasis has shifted as certain diseases have had lower incidences and other diseases have taken on new aspects. In addition, CDC's increasing interest in noncommunicable diseases is reflected in new programs in family planning, nutrition, occupational hazards, congenital birth defects, chronic diseases, dental health, behavioral risk factors, and violence epidemiology.

The Consolidated Surveillance and Communications Activity (CSCA) was established in 1978 in the Bureau of Epidemiology to provide ongoing examination of surveillance efforts, including Morbidity and Mortality Weekly Report (MMWR) statistics. The Activity's primary responsibility was to work with state health departments and units within CDC to propose, coordinate, and evaluate future changes in surveillance activities.

In 1980, CDC was officially reorganized and renamed the Centers for Disease Control. In the reorganization, CSCA (now the Division of Surveillance and Epidemiologic Studies [DSES]) and the responsibility for publishing the MMWR were transferred to the newly created Epidemiology Program Office.

Data Sources

Data on the reported occurrence of notifiable diseases are routinely published in the MMWR and compiled in final form in the Annual Summary from annual reports submitted by the state and territorial departments of health. Also included in the Annual Summary are data from national surveillance activities of various programs at CDC. It should be noted that the MMWR morbidity surveillance system and the national surveillance programs are separate.

Notifiable disease reports published in the MMWR are the authoritative and archival counts of cases. Data from surveillance records for selected diseases, which are useful for detailed epidemiologic analyses, are published on a periodic basis. Case-report totals from surveillance activities may not always agree exactly with those published in the MMWR because of differences in the timing of reports or because of refinements in case definition.

The Epidemiology Program Office gratefully acknowledges the CDC units listed below for their contributions of statistical data from surveillance program records. Requests for further information regarding these data should be directed to the appropriate source.

Center for Environmental Health
Chronic Diseases Division (congenital malformations)
Center for Health Promotion and Education
Office of the Director (homicide and suicide)
Division of Nutrition (pediatric nutrition)
Center for Infectious Diseases
AIDS Program (acquired immunodeficiency syndrome)
Division of Bacterial Diseases (toxic-shock syndrome)
Division of Vector-Borne Viral Diseases (arboviral infections, dengue, and plague)
Division of Viral Diseases (influenza, rabies, and Reye syndrome)
Center for Prevention Services
Office of the Director (fluoridation)
Division of Quarantine (cholera, plague, and refugees)
Division of Tuberculosis Control (tuberculosis)
Division of Sexually Transmitted Diseases (condylomata acuminata, genital herpes, gonorrhea, syphilis, chancroid, granuloma inguinale, lymphogranuloma venereum, and pelvic inflammatory disease)
Epidemiology Program Office
Division of Surveillance and Epidemiologic Studies (years of potential life lost)
National Institute for Occupational Safety and Health
Division of Surveillance, Hazard Evaluations, and Field Studies (occupational hazards)
Totals for the United States, unless otherwise stated, do not include data for American Samoa, Guam, Puerto Rico, the Virgin Islands, Commonwealth of the Northern Mariana Islands (CNMI), and the Pacific Trust Territory, which includes the Republic of Marshalls, Republic of Palau, and the Federated States of Micronesia. Data from the Pacific Trust Territory exclude those for CNMI.

Data from California are provisional and are included in order not to delay publication of this document. The California Department of Health Services should be contacted for final data.

Data in the Annual Summary should be interpreted with caution. Some diseases such as plague and rabies that cause severe clinical illness and are associated with serious consequences are probably reported quite accurately. However, diseases such as salmonellosis and
mumps that are clinically mild and infrequently associated with serious consequences are less likely to be reported. Additionally, subclinical cases are seldom detected except in the course of special studies. The degree of completeness of reporting is also influenced by the diagnostic facilities available, the control measures in effect, and the interests and priorities of state and local officials responsible for disease control and surveillance. Finally, factors such as the introduction of new diagnostic tests (e.g., for hepatitis B) and the discovery of new disease entities (e.g., infant botulism and legionellosis) may cause changes in disease reporting independent of the true incidence of disease. Despite these limitations, the data in this report have proven to be useful in analyzing trends.

Mortality data are from the National Center for Health Statistics. Each year these data are also published in Vital Statistics of the United States, Vol. II.

Data on the notifiable diseases before 1960 are obtained from publications of the National Office of Vital Statistics.

Data for the resident population of states and territories are from the U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 970, Estimates of the Population of States: July 1, 1984 and CB85-203, Table 2, Estimates of the Resident and Civilian Populations of Puerto Rico and the Outlying Areas: 1980 to 1984. Estimates for New York City and Upstate New York are from Current Population Reports, Series P-26, No. 84-52-C, Provisional Estimates of the Population of Counties: July 1, 1984. Estimates for the resident population, by age, sex, and race, are from Series P-25, No. 965, Estimates of the Population of the United States, by Age, Sex, and Race: 1980 to 1984.

Population data from states in which diseases were not notifiable or from which agespecific data were not available were excluded from rate calculation. Rates in the 1984 Annual Summary were calculated using resident population data except for chancroid, gonorrhea, granuloma inguinale, lymphogranuloma venereum, and syphilis, for which only civilian resident population data were utilized.

EXPLANATION OF SYMBOLS USED IN TABLES

$$
\begin{aligned}
& \text { Data not available NA } \\
& \text { No reported cases . - } \\
& \text { Report of disease not required } \\
& \text { by state health department } \\
& \text { (not notifiable) }
\end{aligned}
$$

PART 1:

Summaries of Notifiable Diseases
in the
United States

NOTIFIABLE DISEASES - Summary of reported cases, by month, United States, 1984

Disease	Total	Jan.	Fob.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Unk.
Acquired immunodeficiency syndrome (AIDS)	4,445	345	230	294	316	410	336	434	343	359	512	336	530	
Amebiasis	5.252	381	429	482	384	582	384	426	429	434	51	35	50	-
Anthrax	5. 1	381	429	482	384	5	384	426	429	434	461	352	364	144
Aseptic meningitis	8,326	438	334	305	300	404	577	881	1.472	1.250	1.092	688	504	81
Botulism, total*	123	10	8	18	13	3	7	9	1.472	1.2	1.09 16	13	50	81
Food-borne	19	1	-	1	1	-	-	-	2	3	5	4	2	-
Infant	99	9	8	16	12	3	7	8	5	4	10	9	8	-
Brucellosis (undulant fever) Cholera	131	10	15	8	10	7	11	12	15	14	10	8	11	-
Diphtheria	1	-			-	-	-	-	-	-	1	-	-	-
Encephalitis (arthropod-borne)	129	1	-	-	-		3	9	22	34	46		$\overline{9}$	-
Other primary infections	1.128	63	65	76	73	73	83	120	22	34	46	5	9	-
Post infectious	108	6	7	8	11	16	17	120	137	121	144	71	95	7
Gonorrhea ${ }^{\text { }}$	878,556	68.866	69.281	75,983	66,035	67.510	74.199	77.266	74.353	81.887	9 77.143	67.562	10 78.471	1
Hepatitis A	22,040	1.470	1.768	1.589	1,546	1.495	1.477	77.266 1.579	74.353 1.687	81.887 1.778	77.143 1.821	67.562 1.651	78.471 1.737	2,442
Hepatitis B	26,115	1,702	1,893	2.014	1,878	1,873	1.896	1.947	1.973	1.963	2.136	1.967	2,327	2.546
Hepatitis, non-A non-B	3.871	278	276	301	301	323	306	290	282	. 289	325	277	350	273
Hepatitis, unspecified	5,531	282	330	369	449	387	411	385	424	436	434	402	425	797
Legionellosis	750	43	52	60	42	75	60	71	85	82	62	63	53	2
Leprosy	290	18	22	17	18	23	31	18	19	29	22	17	42	14
Leptospirosis	1.007	1 53	51	4	4	2	3	3	2	6	3	6	3	-
Malaria Measles (rubeola)	1,007 2.587	53 117	51 218	61 385	70	85	96	102	101	113	118	74	79	4
Measies (rubeola)	2,587	117	218	385	519	480	296	143	112	108	112	37	60	
Meningococcal infections, total Civilian	2,746 2,740	233	324	374	287	249	223	167	133	125	175	171	246	39
Civilian Military	2.740 6	233	324	373 1	285	248	223	167	132	125	175	171	245	39
Mumps	3,021	262	337	331	320	319	344	132	145	125		219	1	-
Pertussis (whooping cough)	2,276	141	181	226	204	178	146	140	228	437	150	115	124	40
Plague	31	2	-	2	2	5	4	4	4	4	3	1	124	6
Poliomyelitis, total	8	1	2	-	-	-	1	1			-	-	3	
Paralytic	8	1	2	-	-	-	1	1	-	-	-	-	3	
Psittacosis	172	10	8	10	6	7	11	14	11	7	6	3	79	
Rabies, human	3	-	-				-	1	-		-	1		
Rheumatic fever	117	6	11	11	7	9	13	4	13	4	8	1	12	18
Rubella (German measles)	752	34	54	61	107	132	75	64	52	43	56	32	39	3
Rubella congenital syndrome	5	2-38				2	-	1	1	-	1			
Salmonellosis (excl. typhoid fever)	40,861	2,362	2,365	2,460	2,331	2,644	3,895	4.243	4,625	4,377	5,050	3.102	2,645	762
Shigellosis ${ }^{\text {Syphilis, primary } \& \text { secondary } \dagger}$	17.371 28.607	1.179 2.120	1.109 2.683	1,000	877 2.223	2.921	1,217	1,395	1,995	1,991	2,194	1,572	1,371	550
Syphilis, primary \& secondary ${ }^{\boldsymbol{1}}$	18,607 74	2,120 4	2,683	2,551 3	2.223	2,399 8	2.233	2.155	2,670	2,346	2,468	2,343	2,416	-
Toxic-shock syndrome	482	38	40	34	45	46	45	45	10 39	43	38	11	7 7	
Trichinosis	68	4	5	12	2	24	5	9	3	1	1	32	38	
Tularemia	291	3	7	6	8	33	51	66	49	23	20	15	10	
Typhoid fever	390	26	27	29	29	27	25	37	38	32	44	35	40	1
Typhus fever Flea-borne (endemic, murine)														
Flea-borne (endemic, murine)	53 838	4	1	-	2	4	9	7	5	9	6	4	2	
Tick-borne (Rocky Mountain spotted)	838	5	3	10	24	101	200	158	137	103	54	28	15	
Varicella (chickenpox)	221,983	17.179	27,898	37,659	36,557	39,518	29,961	5.914	2,038	1,236	3.269	7,450	13,303	1

-Includes wound and unspecified botulism.
${ }^{\dagger}$ Civilian cases only.

NOTIFIABLE DISEASES

NOTIFIABLE DISEASES - Reported cases, by geographic division and area, United States, 1984

Area	Tot. Resident Population (in thousands)	AIDS	Amebiasis	Anthrax	Aseptic Meningitis	Botulism			Brucellosis
						Foodborne	Infant	Other	
United States	236,158	4,446	5,252	1	8,326	19	99	5*	131
New England Maine	12,577	153	58	-	449	-	1	-	4
	1.156	-	-	-	31	-	1	-	4
N.H.	977	3	1	-	57	-	-		
Vt.	530	1	2	-	16				
Mass.	5,798	86	3	-	199	-	1	-	3
R.I.	962	7	-	-	63	-	1	-	3
Conn.	3,154	56	52	-	83	-	-	-	1
Mid. Atlantic N.Y. (excl. NYC) N.Y.C. N.J. Pa .	37,151	1,941	1,489	-	1,300	-	12	-	7
	10.570	162	. 38	-	+ 512	-	12	-	3
	7.165	1.416	1,326	-	166	-	-	-	1
	7.515 11.901	273	90	-	294	-	-		1
	11,901	90	35	-	328	-	12	-	2
E.N. Central	41,601	198	251	-	1,537	1	2	2	3
Ohio	10,752	29	57	-	1,537 478	1	2	2	3 1
Ind.	5,498	26	23	-	161	-	1		
III. Mich.	11,511	102	101	-	286	-	1	-	-
Mich. Wis.	9,075 4,766	31	28	-	485	-	1	1	1
Wis.	4,766	10	42	-	127	1	-	-	1
W.N. Central	17.515	43	175	-	315	-	2		16
Minn.	4,162	12	45	-	63	-	2	-	16
Mo.	2,910	25	68	-	67	-	1	-	3
N. Dak.	5,008 686	25	44	-	95	-	1	-	7
S. Dak.	706	-	3	-	13	-	-	-	-
Nebr.	1.606	2	4	-	9 17	-	-	-	3
Kans.	2.438	2	11	-	51	-	1	-	3 2
S. Atlantic	39,450	581	312	1	1,587		3		
Del.	613 4349	4 52	3	1	1,587 12	-	3	-	25
M.C.	4.349 623	52	26	-	215	-	1	-	-
Va.	623 5.636	91 39	-	1	27	-	-	-	-
W. Va.	1,636 1.952	39 5	33	-	264	-	1	-	8
N.C.	6,165	15	7	-	41 245	-	1	-	1
S.C.	3,300	8	NN	-	245	-	-	-	1
Ga.	5,837	53	142	-	59 237	-	-	-	6
Fla.	10,976	314	99	-	487	-	-	-	9
E.S. Central	15,028	24	38	-	522	1			
Ky.	3,723 4,717	10	26	-	100	1	1	-	9
Tenn. Ala.	4,717 3,990	5	NN	NN	129	-	2	-	1
Miss.	3,990 $\mathbf{2 , 5 9 8}$	6	11	-	238	-	-	-	4
	2,598	3	1	-	55	-	-	-	4
W.S. Central	26,098	313	376	-	876	3	12	1	42
Ark.	2,349	1	5	-	26	$-$		$\underline{1}$	42
La.	4,462	55	7	-	80	$\stackrel{\square}{1}$	3	NN	6 3
Okla. Tex.	3,298	9	8	-	125	1	1	NN	7
Tex.	15,989	248	356	-	645	1	7	1	26
Mountain	12,553	75	144	-	350	-	6	-	7
Mont.	824	-	2	-	26	-	1	-	2
Idaho	1,001	1	7	-	12	-	-	-	1
Wyo.	511 3.178	1	$\bar{\square}$	-	9	-	1	-	-
Colo.	3.178 1424	36	62	-	136	-	1	-	3
N. Mex. Ariz.	1.424	3	7	-	5	-	1	-	1
Ariz.	3.053	21	50	-	71	-	-	-	-
Utah Nev.	1.652	7	7	-	65	-	2	-	-
Nev .	911	7	9	-	26	-	-	-	-
Pacific	34,184	1.117	2,409	-	1,390	14	58	2	18
Wash.	4,349	60	2, 34	-	139	14	58 6	2	18
Calif.	2,674	13	101	-	NN	3	2	-	-
	25,622	1.030	2,249	-	1,139	6	47	2	17
Alaska Hawaii	500	2	10	-	4	5	-	-	
Hawaii	1.039	12	15	-	108	-	3	-	1
Guam	120	-	3	-	7	-	-	-	1
P.R.	3.270	72	5	-	98	-	-	-	-
V.I.	180	1	-	-	1	-			-
Pac. Trust Terr.	NA	-	663	NN	-	NN	NN	NN	NN
C.N.M.I.	19	-	8	-	5	NN	NN	NN	NN
Am. Samoa	35	-	-	-	1	-	-	-	-

-Includes wound and unspecified botulism.

NOTIFIABLE DISEASES-Reported cases, by geographic division and area, United States, 1984 (continued)

Area	Chancroid	Cholera	Diphtheria	Encephalitis			Gonorriea	Granuloma inguinale
				Arthropodborne	Other primary infections	Postinfectious		
United States	665*	1	1	129	1,128	108	878,556*	30*
New England	3	-	-	2	49	5	22,906	1
Maine	-	_	-	-	-	-	1.031	-
N.H.	-	-	-	-	7	-	723	-
Vt .	-	-	-	-	5	-	380	\bigcirc
Mass.	2	-	-	2	20	-	9,977	1
R.I.	2	-	-	-	\square	-	1,628	-
Conn.	1	-	-	-	17	5	9.167	-
Mid. Atlantic	341	-	-	3	120	9	118,184	3
N.Y. (excl. N.Y.C.)	-	_	-	2	31	6	18,764	-
N.Y.C.	340	-	-		-9	-	48.539	3
N.J.	1	-	-	1	24	-	20,099	-
Pa .	.	-	-	-	56	3	30,782	-
E.N. Central	23	-	-	56	306	21	130,224	1
Ohio	10	-	-	23	83	9	32,275	-
Ind.	1	-	-	15	64	10	14,544	1
III.	6	-	-	4	57	10	35,160 35,406	1
Mich.	5	-	-	14	68	2	35,406 12,839	-
Wis.	1	-	-	14	34	2	12,839	-
W.N. Central	1	-	-	20	92	3	41,685	-
Minn.	-	-	-	11	46	1	6.080	-
lowa	-	-	-	5	27	-	4,603	-
Mo.	-	-	-	2	10	-	20.069	-
N. Dak.	1	-	-	-	-	1	387	-
S. Dak.	-	-	-	2	-	1	999 3018	-
Nebr. Kans.	-	-	-	-	1 8	1	3,018 6,529	-
Kans.	-	-	-	-	8	1		-
S. Atlantic	227	1	-	14	163	32	220,291	20
Del.	227	-	-	-	1	-	4.046	-
Md.	-	1	-	-	35	2	28,342	-
D.C.	-	-	-	-	33	-	15.257	-
Va .	3	-	-	-	33	5	20,194	-
W. Va.		-	-	6	36	-	2,480 34	-
N.C.	30	-	-	5	33	8	34,391	-
S.C.	1	-	-	1	6	1	21.522	16
Ga.	165	-	-		2	3 13	42,847	16
Fla.	28	-	-	2	17	13	51.212	4
E.S. Central	1	-	-	1	57	8	75,732	-
Ky.	,	-	-	-	13	-	8,999	-
Tenn.	1	-	NN	1	20	2	30,749	-
Ala.	-	-	-	-	21	5	22,938	-
Miss.	-	-	-	-	3	1	13,046	-
W.S. Central	-	-	-	2	141	7	113,234	-
Ark.	-	-	-	-	-	2	10,298	-
La.	-	-	-	-	14	-	24,571	-
Okla.	-	-	-	1	19	1	12,551	-
Tex.	-	-	-	1	108	4	65.814	-
Mountain	4	-	-	5	32	13	27.586	-
Mont.	1	-	-	-	-	-	1.026	-
Idaho	-	-	-	-	-	-	1.269	-
Wyo.	-	-	-	-	-	-	750	-
Colo.	-	-	-	1	13	-	7.937	-
N. Mex.	3	-	-	-	1	-	3,329	-
Ariz.	3	-	-	4	9	3	7,795	-
Utah	-	-	-	-	8	10	1,278	-
Nev .	-	-	-	-	1	-	4,202	-
Pacific	65	-	1	26	168	10	128,714	5
Wash.	-	-	-	-	10	-	9.159	-
Oreg.	-	-	-	-	-	-	6,633	-
Calif.	65	-	1	26	154	9	108,102	5
Alaska	-	-	-	-	-	-	2.933	-
Hawaii	-	-	-	-	4	1	1,887	-
Guam	3	-	-	-	-	-	-	-
P.R.	13	-	-	-	5	2	3,438	1
V.I.	-	-	-	-	-	-	-	-
Pac. Trust Terr.	-	19	-	-	-	-	-	-
C.N.M.I.	-		-	-	-	-	-	-
Am. Samoa	-	-	-	-	-	-	-	-

[^0]
NOTIFIABLE DISEASES

NOTIFIABLE DISEASES-Reported cases, by geographic division and area, United States, 1984 (continued)

Area	Hepatitis A	Hepatitis B	Hepatitis non-A non- B	Hepatitis unsp.	Legionellosis	Leprosy	Leptospirosis	Lymphogranuloma venereum	Malaria
United States	22,040	26,115	3,871	5.531	750	290*	40	$170{ }^{+}$	$1.007{ }^{\text {§ }}$
New England	495	1,781	162	241	53	13	3	-	48
Maine	28	76	9	7	5	13	3	-	48
N.H.	26	100	9	8	1	-	-	-	-
Vt .	11.	31	10	3	4	-	-	-	7
Mass.	320	1,016	83	188	26	6	1	-	26
R.I.	23	143	2	-	3	4	1	-	4
	87	415	49	35	14	3	2	-	11
Mid. Atlantic	2,217	4,481	358	405	111	51	2	23	151
N.Y. (excl. NYC)	381	813	82	80	NN	3	1	1	28
N.Y.C.	5609	1,528 ${ }^{\text {d }}$	409	1409	17	46	1	22	46
N.J.	656	1.052	105	142	26		-	2	41
Pa.	620	1,088	131	43	68	2	-	-	36
E.N. Central	1,876	2,866	418	396	235	11	4	7	89
Ohio Ind.	639	674	70	97	86	3	3	3	20
III.	120	329	59	84	27	-	-	-	5
Mich.	462	. 606	82	106	31	6	-	-	32
Wis.	423 232	1.067 190	139	99	50	2	-	4	17
		190	68	10	41	-	1	-	15
W.N. Central	767	728	138	41	38	4	4	1	27
Minn. lowa	130	129	36	4	4	2	4	-	10
Mo.	60 138	108	20	10	4	1	2	-	2
N. Dak.	138	297	46	18	16	1	2	-	8
S. Dak.	116	16	8	2	3	-	-	-	1
Nebr.	206 47	26	5	3	2	-	-	-	1
Kans.	70	65 87	6 17	3 4	5 4	-	-	1	3 2
S. Atlantic Del.	1,374	5.156	727	562	138	15	5	84	142
Md.	44 60	61	24	7	25	15	5	84	$\begin{array}{r}4 \\ \\ \hline\end{array}$
D.C.	60 13	694	109	85	12	1	-	-	30
Va .	13 124	154 522	2	9	3	-	-	1	6
W. Va.	124 35	522	99 10	48	33	5	1	2	36
N.C.	105	57 512	10	6	6	-	-	-	15
S.C. Ga.	36	512 628	69	84	14	-	2	-	15
Ga. Fla.	178	935	49	37 38	9 23	1	-	71	15
Fla.	779	1.593	341	248	13	8	2	10	33
E.S. Central	624	1,570	172	115	24	-	2	5	14
Kenn.	316	245	27	26	4	-	1	3	2
Ala.	110	716	75	54	NN	-	1	2	3
Miss.	127 71	464	70	35	19	-	1	-	8
	71	145	-	-	1	-	-	-	1
W.S. Central	3,544	2,175	262	2,014	52	36	6	5	101
La.	93	99	27	2.114	5	1	6	5	101
Okla.	316 530	326	32	88	4	4	2	4	12
Tex.	530	, 206	59	117	19	-	-	1	12
	2,605	1,544	144	1,695	24	31	4	-	77
Mountain Mont	2,694	1,341	312	380	36	9	-	2	32
Mont. Idaho	160	25	8	3	7	-	NN	1	2
Wyo.	116 31	73 14	8	3	2	-	-	-	2
Colo.	588	14 278	9 46	3 102	1	1	-	-	-
N. Mex.	295	120	38	102 33	6	1	-	-	11
Ariz.	777	486	138	151	10	$\overline{6}$	-	-	11
Utah	427	106	31	38	8	1	-	1	5
Nev .	300	239	34	47	-	1	-	-	5
Pacific	8.449	6,017	1,322	1,377	63	151	14	43	403
Wash.	, 373	318	131	1, 54	13	15	14	43	40
Oreg.	1.007	377	154	38	1	2	-	1	16
Calif.	7,005	5,221	1,019	1,268	48	91	1	42	362
Alaska	31 33	27	- 6	1, 6	-	-	NN	4	362
Hawaii	33	74	12	11	1	43	13	-	5
Guam P.R	16 242	10 636	1	25	-	3	-	\square	1
P.R.	242	636	1	240	-	5	1	1	4
V.I. Pac. Trust Terr	7	16	-	1	-	-	-	-	-
Pac. Trust. Terr.	10	9	-	75	NN	80	-	_	1
C.N.M.I.	94	14	-	9	,	2	-	_	1
Am. Samoa	11	2	-	1	NN	2	-	-	

"Includes 258 imported cases.
${ }_{\S}$ Civilian cases only.
${ }^{I}$ Includes 1,005 imported cases.
Based on 10% sample of cases reported.

NOTIFIABLE DISEASES-Reported cases, by geographic division and area, United States, 1984 (continued)

Area	Measles		Meningococcal infections	Mumps	Pertussis	Plague	Poliomyelitis		Psittacosis
	Indigenous	Imported					Total	Paralytic	
United States	2,272	$315 *$	2,746	3,021	2,276	31	8^{\dagger}	8^{\dagger}	172
Now England	94	12	197	99	76	-	-	-	13
Maine	-	-	8	30	2	-	-	-	13
N.H.	33	3	12	21	17	-	-	-	-
Vt .	2	5	34	5	25	-	-	-	2
Mass.	49	-	74	22	22	-	-	-	6
R.I.	-	-	19	11	4	-	-	-	1
Conn.	10	4	50	10	6	-	-	-	4
Nid. Atlantic	140	42	451	344	197	-	2	2	8
N.Y. (excl. NYC)	42	15	147	103	109	-	-	-	4
N.Y.C.	93	20	75	46	20	-	-	-	3
N.J.	4	3	93	139	12	-	-	-	
Pa.	1	4	136	56	56	-	2	2	1
E.N. Central	625	80	450	1,172	512	-	-	-	11
Ohio	3	8	141	518	79	-	-	-	2
Ind.	1	2	58	77	259	-	-	-	-
III.	184	2	104	249	29	-	-	-	1
Mich.	409	55	90	202	31	-	-	-	3
Wis.	28	13	57	126	114	-	-	-	5
W/.N. Central	49	9	171	114	134	-	1	1	4
Minn.	44	3	37	7	16	-	1	1	2
lowa	-	-	22	26	15	-	-	-	1
Mo.	5	1	53	11	23	-	-	-	1
N. Dak.	-	-	3	2	-	-	-	-	1
S. Dak.	-	-	6	-	8	-	-	-	-
Nebr.	-	-	13	6	17	-	-	-	-
Kans.	-	5	37	62	55	-	-	-	-
8. Atlantic	34	39	557	214	241	-	1	1	85
Del.	7	-	4	3	2	-	-	-	-
Md.	7	15	46	46	59	-	1	1	2
D.C.	-	8	8	4	-	-	-	1	-
Va .	1	4	66	20	19	-	-	-	71
W. Va.	-	-	5	43	11	-	-	-	- 1
N.C.	-	1	88	23	37	-	-	-	3
S.C.	-	1	58	6	2	-	-	-	3
Ga .	5	1	105	22	20	-	-	-	2
Fla.	21	9	177	47	91	-	-	-	3
E.S. Central	1	5	157	53	15	-	1	1	-
Ky.	1	5	50	11	2	-	-	-	-
Tenn.	-	2	52	17	7	-	1	1	-
Ala.	-	3	36	6	2	-			-
Miss.	-	-	19	19	4	-	-	-	-
W.S. Central	638	28	317	228	343	1	2	2	9
Ark.	8	-	39	9	24	-	1	-	-
La.	5	3	68	-	12	-	1	1	-
Okla.	-	8	30	NN	247	-		-	-
Texas	625	17	180	219	60	1	1	1	9
	114	31	81	279	131	23	-	-	6
Mont.		-	2	11	20	-	-	-	6
Idaho	-	23	10	10	7	-	-	-	-
Wyo.	-	-	3	3	6	-	-	-	-
Colo.	1	5	31	31	49	3	-	-	2
N. Mex.	88	-	7	NN	13	16	-	-	-
Ariz.	-	1	18	203	27	2	-		2
Utah	25	2	9	14	7	2	-	-	1
Nev.		-	1	7	2	-	-	-	1
Pacific	577	69	365	518	627	7	1	1	36
Wash.	160	18	56	56	326	1	-	-	4
Oreg.	-		50	NN	31	-	-	-	6
Calif.	280	46	247	426	163	6	1	1	20
Alaska	-	-	9	14	5	-	-	-	$-$
Hawaii	137	5	3	22	102	-	-	-	6
	101	3	1	13	-	-	-	-	-
P.R.	285	-	7	194	4	-	-	-	-
V.I.	-	-	-	6	-	-	-	-	-
Pac. Trust Terr.	1	1	2	37	452	-	-	-	NN
C.N.M.I.	5	3	$\underline{-}$	8	452	-	-	-	NN
Am. Samoa	-	-	-	5	-	-	-	-	NN

[^1]Includes 1 imported case.

NOTIFIABLE DISEASES
NOTIFIABLE DISEASES-Reported cases, by geographic division and area, United States, 1984 (continued)

Area	Rabies		Rheumatic fever, acute	Rubella		Salmonellosis	Shigellosis	Syphilis	
	Animal	Human		Rubella	Cong. syndrome			$\begin{aligned} & \text { Primary \& } \\ & \text { secondary } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { stages } \end{gathered}$
United States	5,567	$3{ }^{*}$	117	752	5	40,861	17.371	28,607 ${ }^{\dagger}$	69,888 ${ }^{\dagger}$
New England	59	-	26	19	-	4,107	378	527	1,403
Maine	20	-	2	1	-	397	8	9	29
N.H.	17	-	-	1	-	225	13	12	15
Vt.	-	-	1	-	-	149	12	1	3
Mass.	14	-	NN	16	-	2,315	215	289	748
R.I.	-	-	23	-	-	. 145	19	25	115
Conn.	8	-	-	1	-	876	111	191	493
Mid. Atiantic	556	1	-	234	-	7,440	1.415	3,811	11,030
N.Y. (excl. NYC)	137	-	NN	99	-	1,513	. 303	, 337	1,090
N.Y.C.	-	-	NN	111	-	1,800§	$350 \S$	2,280	6,686
N.J.	35	-	NN	23	-	2,054	495	, 674	1,996
Pa.	384	1	NN	1	-	2,073	267	520	1,258
E.N. Central	216	-	31	105	-	6,826	2,685	1,412	4,477
Ohio	27	-	5	2	-	1,033	2,685	238	648
Ind.	23	-	14	5	-	+ 572	281	166	461
Mich.	73 22	-	1	68	-	2,834	1,370	677	2,422
Mich. Wis.	22 71	-	8 3	22	-	1,230	334	275	747
Wis.	71	-	3	8	-	1,157	245	56	199
W.N. Central	783	-	7	38	1	2,218	730	371	1,252
Minn.	104	-	NN	4	1	2,218 669	113	90	+231
lowa Mo.	152	-	-	1	1	247	98	19	80
N. Dak.	138	-	1	3	-	617	244	185	711
S. Dak.	218	-	2	-	-	143 82	24 113	9 1	12
Nebr.	48	-	NN	-	-	122	113 32	15	44
Kans.	53	-	4	30	-	338	106	52	186
S. Atiantic	1,810	-	2	34	-	7,880			
Del.	6 1.100	-	2	24	-	7.880 161	2,221 28	8,230 21	18,887 55
M.C.	1.100 12	-	-	1	-	1,346	242	502	1,286
Va.	208	-	NN	1	-	185	71	330	973
W. Va.	41		NN	1	-	1,255	201	420	1,192
N.C.	27	-	NN	-	-	185	5	18	335
S.C.	67	-	NN	-	-	898	290	862	1.789
Ga.	200	-	NN	2	-	677 1.314	136 216	772 1429	1,610 3,333
Fla.	149	-	2	28	-	1,314 1,859	1216 1,032	1,429 3,876	$\mathbf{3 , 3 1 4}$ $\mathbf{8 , 3 1 4}$
E.S. Central	280	-	2	12	-	1.581			
Ky.	53	-	2	12 6	-	1.581 332	373 94	2,032 97	4,266 317
Tenn.	82	-	NN	-	-	450	94 164	97 542	1,162
Ala.	130	-	NN	3	-	477	76	673	1,369
Miss.	15	-	-	3	-	322	39	720	1,418
W.S. Central	991	1	10	80	-	3,333	2,035	6,763	16,084
Ark.	101	-	-	5	-	+351	2,035	206	452
La.	67	-	-	5	-	219	110	1,227	2,925
Okla.	104	-	NN	-	-	424	213	188	513
Tex.	719	1	10	75	-	2,339	1,659	5,142	11,194
Mountain	298	-	31	23	-	1,564	1,769	677	1,602
Mont.	122	-	NN	-	-	61	15	4	10
Idaho	11	-	NN	1	-	86	46	23	41
Wyo.	30	-	3	3	-	15	15	3	13
Colo.	44	-	19	2	-	508	380	188	360
N. Mex.	12	-	8	1	-	327	353	99	262
Ariz.	50	-	-	5	-	353	886	238	650
Utah	6	-	1	7	-	118	74	18	57
Nev.	23	-	-	4	-	96	-	104	209
Pacific	674	1	8	207	4	5.912	5,765	4,784	11,887
Wash.	3	-	-	2	-	515	224	159	470
Oreg.	7	-	NN	2	1	1,036	237	117	251
Calif.	546	1	6	197	3	3,903	5,113	4,424	11,004
Alaska	18	-	2	1	-	83	26	6	37
Hawaii	-	-	NN	5	-	375	165	78	125
Guam	-	-	3	4	-	251	90	-	-
P.R.	60	-	4	24	-	362	79	848	2,084
V.I.	-	-	-	-	-	2	8	-	-
Pac. Trust Terr.	-	NN	-	1	-	1	1	-	-
C.N.M.I.	-	-	2	2	-	20	66	-	-
Am. Samoa	-	-	6	-	-	9	9	-	-

-Includes 1 imported case.
${ }_{\delta}^{\dagger}$ Civilian cases only.
$\S_{\text {Based on reports to the Division of Bacterial Diseases. }}$

NOTIFIABLE DISEASES-Reported cases, by geographic division and area, United States, 1984 (continued)

Area	Tetanus	Toxicshock 3 yndrome	Trichinosis	Tuberculosis	Tularemia	Typhoid fever	Typhus fever		Varicella (Chickenpox)
							Murine	RMSF	
United States	74	482	68	22,255	291	390*	53	838	221,983
New England	3	21	14	677	7	20	-	6	20,097
Maine	-	3	-	35	-	-	-	-	2,553
N.H.	-	3	-	27	-	-	-	-	1,783
Vt .	-	5	-	8	-	-	-	-	NN
Mass.	2	6	7	376	7	15	-	4	6,244
R.I.	-	3	-	55	-	-	-	-	2,604
Conn.	1	1	7	176	-	5	-	2	6,913
Mid. Atlantic	7	18	31	3.872	3	69	1	28	11,804
N.Y. (excl. NYC)	3	NN	1	616	-	12	-	11	5,993
N.Y.C.	1	-	3	1,630	2	26	1	2	5,811
N.J.	1	4	23	790	1	21	-	3	NN
Pa.	2	14	4	836	-	10	-	12	NN
E.N. Central	7	118	3	2,934	13	68	-	49	125,466
Ohio	-	34	3	528	1	7	-	24	11,564
Ind.	-	6	-	383	-	12	-	7	13,686
III.	4	26	-	1,207	10	30	-	15	29,790
Mich.	-	23	-	661	1	9	-	3	35,964
Wis.	3	29	-	155	1	10	-	-	34,462
W.N. Central	10	70	-	706	79	14	-	49	23,724
Minn.	1	22	-	138	1	7	-	1	48
lowa	1	13	-	68	-	-	-	6	7.530
Mo.	6	12	-	354	40	6	-	14	2,565
N. Dak.	-	10	-	14	-	-	-	-	1.436
S. Dak.	1	3	-	25	34	-	-	5	1,362
Nebr.	-	6	-	30	-	-	-	5	488
Kans.	1	4	-	77	4	1	-	18	10,295
S. Atlantic	17	41	2	4,699	9	42	1	393	11,359
Del.	-	1	-	57	-	-	-	1	153
Md.	3	4	-	428	2	3	-	25	2,141
D.C.	-	-	-	189	-	3	-	-	2, 80
Va .	1	7	1	473	1	8	-	47	1.189
W. Va.	1	2	-	133	1	-	-	7	7,796
N.C.	-	7	1	756	1	1	1	178	NN
S.C.	1	1	-	544	-	1	-	80	NN
Ga.	4	4	-	784	4	8	-	49	NN
Fla.	7	15	-	1,335	-	18	-	6	NN
E.S. Central	3	3	-	2,056	6	9	-	96	3,506
Ky.	-	3	-	510	1	1	-	19	3,434
Tenn.	-	NN	-	601	4	2	-	50	NN
Ala.	2	NN	-	565	-	2	-	15	NN
Miss.	1	N	-	380	1	4	-	12	72
W.S. Central	17	47	13	2,716	122	36	38	200	16,331
Ark.	2	5		315	83	-	-	25	, 207
La.	3	NN	-	377	7	2	-	6	NN
Okla.	2	20	13	262	23	4	1	116	NN
Tex.	10	22	13	1.762	9	30	37	53	16.124
Mountain	1	66	1	629	37	13	-	12	7.833
Mont.	-	3	-	33	2	1	-	7	397
Idaho	-	11	-	28	8		-	1	NN
Wyo.	-	2	-	5	1	-	-	2	368
Colo.	-	8	-	96	8	5	-	1	NN
N. Mex.	1	7	-	112	3	3	-		NN
Ariz.	-	12	-	273	4	3	-	-	5,827
Utah	-	19	1	40	6	-	-	-	, 165
Nev.	-	4	,	42	5	1	-	1	1,076
Pacific	9	98	4	3,966	15	119	13	5	1,863
Wash.	1	9	-	207	4	3	-	2	NN
Oreg.	$-$	9	-	156	3	2	-	1	NN
Calif.	7	80	-	3,306	8	108	8	2	1,029
Alaska	-	NN	3	79	-	1	NN	NN	NN
Hawaii	1	N	1	218	-	5	5	N	834
Guam	-	-	-	54	-	-	-	-	250
P.R.	10	-	-	418	-	5	-	-	2,218
V.I.		-	-	4	-	3	-	-	2,218
Pac. Trust Terr.	1	NN	NN	188	NN	6	-	-	433
C.N.M.I.	-	-	NN	58	NN	-	-	-	78
Am. Samoa	-	NN	-	-	NN	1	-	-	34

[^2]NOTIFIABLE DISEASES - Summary of reported cases, by age group, United States, 1984

Disease	Total	Under 1	1-4	5-9	10-14	16-19	20-24	25-29	30-39	40-49	50-59	60+	$\begin{gathered} \text { Age } \\ \text { not } \\ \text { stated } \end{gathered}$
Cholera	1	-	-	-	-	-	-	-			-	1	-
Diphtheria	1	-	-	-	7-	210.520	320, -	-	115.340	1-	- 230	,	
Gonorthea	878,556 ${ }^{\circ}$	(...	2,169)	7.839	210,520	329,476	179,972	115,340		33.240	\cdots	598
Hepatitis A	22,040	52	1,180	2,554	1,826	1.909	3,922	3.517	3,344	1.219t	$815 \dagger$	1.032 ${ }^{\text {¢ }}$	598
Hepatitis B	26.115	84	137	137	224	2,292	6,007	5.573	5.549	2,088 ${ }^{+}$	1,341 ${ }^{\text {t }}$	1.653 ${ }^{\text {+ }}$	874
Hepatitis non-A non-B	3.871	15	29	64	81	277	689	679	744	$327 \dagger$	291 t	$585{ }^{+}$	56
Hepatitis, unspecified	5.531	25	195	422	325	517	1.055	976	959	$331{ }^{+}$	$213+$	$326 \dagger$	154
Measles (rubeola)	2.587	158	459	278	671	676	204	77	47	10	2	1	4
Meningococcal infections, total	2.746	622	738	187	156	250	126	75	121	$93+$	91 t	$207 \dagger$	60
Military	2.746	622	73	-	156	1	123	76	119	92t	91 t	$207+$	
Civilian	2,740	622	738	187	156	249	123	76	119	$92 \dagger$	$91{ }^{\text {¢ }}$	$207 \dagger$	60
Mumps	3.021	37	364	842	771	335	79	60	83	$35{ }^{+}$	$24{ }^{\dagger}$	$21{ }^{1}$	367
Pertussis (whooping cough)	2,276	871	551	231	155	90	62	52	102	53	17	12	80
Plague	31		1	-	7	2	2	1	8	6	1	3	-
Poliomyelitis, total	8	4	1	-	-	-	1	1	-	1	-	-	-
Paralytic	8	4	1	-	-	-	1	1	$\overline{5}$	17	3	1	73
Rubella (German measles)	752	110	114	85	44	65	115	70	55	17	3	${ }^{1}$	73
Salmonellosis	40.861	5.886	6,091	2,169	1.457	1.867	2.676	2,360	3.283	$1.680{ }^{+}$	$1.524{ }^{\text {t }}$	3,723 ${ }^{\text {+ }}$	7.635
Shigellosis	17,371	640	5,098	2,282	774	563	1.221	1.372	1.707	$688{ }^{\dagger}$	$387 \dagger$	$635{ }^{\dagger}$	1,903
Syphilis, primary \& secondary	28,607*		18)	159	3,218	8.069	6,927	6,953	(.......	3.263	.)	-
Tetanus	74	2	1	-	1	-	2 2	4	11	19.334^{6}	8	39	3
Tuberculosis	22,255	(.... 7	9...)	298	179	414	1,268	(......		19.334		22)	3 11
Typhoid fever	390	3	. 29	35	43	34	43	59	61	$30+$	$13 \dagger$	$22 \dagger$	11

-Civilian cases only
 (34); Hepatitis, unspecified (33); Meningococcal infections, civilian (20); Mumps (3); Salmonellosis (510); Shigellosis (101); and Typhoid fever (7).

Estimates of the resident population of the United States, by age, sex, and race*, July 1, 1984

Age	Total			White			Black and other races			Back		
	Total	Male	Female									
All Ages	236,158	114,765	121,393	200,984	98,011	102,973	35,174	16,754	18,420	28,486	13,479	15,007
<1	3,637	1,861	1.775	2,962	1.521	1.441	675	341	335	546	275	271
1-4	14,180	7.254	6.926	11.524	5,910	5,614	2,656	1.344	1.312	2,136	1.081	1.054
5-9	16,351	8,367	7.984	13,277	6,813	6,463	3,074	1,554	1.521	2,516	1,272	1,244
10-14	17,567	8,994	8.573	14,283	7,328	6,955	3,284	1.666	1.618	2,684	1.359	1,325
15-19	18,768	9,551	9,216	15,382	7.841	7.541	3,386	1,711	1,675	2,818	1,414	1,404
20-24	21.311	10,684	10,626	17.820	8,978	8,842	3,491	1,706	1.784	2,843	1,368	1,475
$25-29$ $30-34$	21,309	10,615 9	10.694	17.968	9,028	8.940	3,341	1.587	1.754	2,689	1.266	1,423
$30-34$ $35-39$	19,602 16,812	9.715 8.278	9.887 8.535	16.649	8,338	8,311	2.953	1.377	1,576	2,303	1,067	1.236
$35-39$ $40-44$	16,812 13.836	8.278 6,784	8.535 7.052	14.523	7.230 5	7.293	2,290	1.048	1.242	1,762	801	961
$40-44$ $45-49$	13,836 11,417	6,784 5,570	7,052 5.847	11,966 9,901	5,925 4,877	6.041 5.024	1.871 1.516	859	1.011 822	1.462 1.213	664 547	798 665
50-54	11,013	5,319	5,694	9,585	4,675	4,910	1,516 1.428	643	822 784	1,213 1,151	547 518	665
55-59	11,449	5.412	6,037	10.114	4,809	5,306	1,334	603	731	1,099	499	600
60+	38,907	16,361	22.547	35,030	14,740	20,291	3,876	1,622	2,255	3.265	1.347	1.918
Median age, years	31.3	30.0	32.5	32.2	31.0	33.4	26.5	25.2	27.8	26.3	24.9	27.6

- Numbers in thousands

Source: U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 965, Estimates of the Population of the United States, by Age, Sex, and Race, 1980-1984.

PART 2:

 Statistical Tables, Graphs, Maps, and Naratives for Notifiable Diseases in the United StatesACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS) - Cases and known deaths by 6-month period of diagnosis through December 1984*

[^3]As of June 30, 1985, physicians and health departments in the United States reported 9,057 cases (8,939 in adults and 118 in children) diagnosed through December 31, 1984, that met the surveillance definition for acquired immunodeficiency syndrome (AIDS).

Of these 9,057 cases, $66(1 \%)$ were diagnosed before 1981, $257(3 \%)$ were diagnosed in 1981, 981 (11%) in 1982, 2,683 (30%) in 1983, and $5,070(56 \%)$ in 1984. Pneumocystis carinii pneumonia (PCP) was the most commonly reported opportunistic disease among AIDS patients. Fifty-four percent of patients had PCP without Kaposi's sarcoma (KS), 22\% had KS without PCP, 7% had both PCP and KS, and 17% had other opportunistic diseases without either KS or PCP. Of the 9,057 patients, $5,158(57 \%)$ are known to have died (57% of the adults and 75% of the children). Seventy-six percent of the patients diagnosed before 1983 have died. Of the patients who have died, 85% were diagnosed with opportunistic diseases other than KS alone. Fifty-nine percent of the patients are white; 25%, black; 14%, Hispanic; and the remainder, Asians, American Indians, or persons of unknown origin.

Cases were reported from 46 states, the District of Columbia, Puerto Rico, and the Marshall and Virgin Islands. New York City reported 35% of the cases; San Francisco, 14\%; Los Angeles, 11\%; Miami, 4\%; and Newark, 3\%.

Of the 8,939 adult patients reported with AIDS, 89% were $20-49$ years of age; 47% were 30-39 years old. Groups with an increased incidence of AIDS were homosexual and bisexual males (73%) and past or present intravenous (IV) drug abusers (17\%). Other patient groups with an increased incidence of AIDS included persons who had received treatment for hemophilia or another coagulation disorder (1\%), heterosexual partners of persons with AIDS or at increased risk for AIDS (1\%), and recipients of blood transfusions (1\%). The remaining 7\% of patients were placed into the "other/unknown" patient group. This group includes patients born in countries in which most AIDS cases have not been associated with known risk factors (3\%) and other patients who had no identifiable risk factor or for whom risk-factor information was absent or incomplete (4\%). Six percent of all reported adult patients were female. The highest incidence of cases in adult females was among IV drug abusers (55\%).

Among the 118 children reported with AIDS, 86 (73\%) had at least one parent with AIDS or at increased risk of developing AIDS, 18 (15\%) had received blood transfusions, five (4\%) had a history of treatment for hemophilia, and the remaining nine (8%) had no identifiable risk or risk-factor information was absent or incomplete.

Fifty-nine percent of the children were under 1 year old at the time of diagnosis. Forty-one percent were female. Although pediatric cases were reported from 19 states, four states-New York, Florida, California, and New Jersey - accounted for 81% of all cases.

ARBOVIRAL INFECTIONS (of the central nervous system) - Cases due to St. Louis encephalitis virus, by month, United States, 1971-1984

Active surveillance of arboviral infections of the central nervous system is maintained by the Division of Vector-Borne Viral Diseases. In 1984, 129 cases were reported: Eastern equine encephalitis, five cases; Western equine encephalitis, two cases; California serogroup viral infections, GO cases; and St. Louis encephalitis (SLE), 32 cases. Twenty-six SLE cases, one fatal, occurred in an outbreak centered in Los Angeles, California.

ARBOVIRAL INFECTIONS

ARBOVIRAL INFECTIONS (of the central nervous system) - Cases due to California serogroup viruses, by month, United States, 1971-1984

ARBOVIRAL INFECTIONS (of the central nervous system) - Cases due to Western and Eastern equine encephalitis viruses, by month, United States, 1971-1984

ASEPTIC MENINGITIS

ASEPTIC MENINGITIS - Rates, by month, United States, 1980-1984

During 1984, 8,326 cases of aseptic meningitis were reported to CDC. Isolates reported during August, September, and October accounted for 3,814 (45.8\%) of the reported cases, with August being the peak month (1,472 cases, 17.7%). This pattern coincides closely with that of enterovirus isolations. The peak incidences for both occurred in the same months, either August or September, in 5 of the past 6 years.

BOTULISM

BOTULISM (foodborne) - Cases, by year, United States, 1960-1984

Sixteen outbreaks (19 cases) of foodborne botulism were reported for 1984. Two of these outbreaks involved four individuals and were associated with eating fermented foods. Type E toxin was implicated. Type A toxin was associated with 13 of the remaining cases. Type B toxin was associated with one case, and for the other case a toxin type was not determined.

BOTULISM (infant) - Cases, by year, United States, 1975-1984

Of the 99 infant botulism cases reported in 1984, slightly more than half (56) were in females. The age range for all patients was 3-37 weeks. Type A toxin was found in 42 (42\%) of the cases, type B toxin in 56 (57%), and both type A and B toxins were found in one.

BRUCELLOSIS

BRUCELLOSIS - Rates, by year, United States, 1945-1984

For 1984, 131 cases of brucellosis were reported to CDC. The reported occurrence sharply decreased from 1947 until 1965 because of widespread adoption of dairy-product pasteurization and the bovine-brucellosis eradication program. The downward trend continued at a slower rate until 1978, when a plateau of approximately 0.1 cases/100,000 population/year was achieved

DIPHTHERIA

DIPHTHERIA - Rates, by year, United States, 1955-1984

Only one case of diphtheria was reported in 1984. The patient was a 66 -year-old female. This represents the lowest total since such reporting began for what once was a major cause of infant morbidity and mortality. The slight increase in the incidence of diphtheria beginning in 1973 and peaking in 1975 represented cutaneous cases reported from Washington State. In the period 1980-1984, five or fewer cases of diphtheria were reported each year-all of which were noncutaneous cases-and 12 (75\%) of the 16 cases in that period were among persons 20 years of age or older. Age distributions of persons with recent cases and of persons participating in serosurveys showed that many adults had inadequate levels of circulating antitoxin. These findings indicate that providers of health care need to ensure that adults are adequately vaccinated against diphtheria and tetanus in accordance with the recommendations of the Immunization Practices Advisory Committee (ACIP).

GONORRHEA

GONORRHEA - Rates, by year, United States and large cities," 1968-1984

- Cities with population over 200,000

From 1975 to 1984, rates of gonorrhea declined by $\mathbf{2 0 \%}$ for the United States and declined by 17% for combined metropolitan areas.

Age-specific rates per 100,000 population showed that teenagers and young adults were at highest risk for acquiring gonorrhea. Of all reported gonorrhea cases, nearly 40% were accounted for by persons $20-24$ years old, and 25% by persons $15-19$ years of age. The highest morbidity for males occurred for the 20- to 24-year age group, and the highest for females, for those 15-19 years old. This substantially higher morbidity for younger persons, particularly teenage females, may place them at higher risk for sequelae of gonococcal infection such as pelvic inflammatory disease and infertility.

GONORRHEA - Rates, * by state, United States, 1984

*Based on reported cases per 100,000 population.

The number of reported cases of gonorrhea decreased by 2.4% from 900,435 in 1983 to 878,556 in 1984. Gonorrhea rates per 100,000 population declined from 387.6 to 374.8 during the same period.

The decline in gonorrhea rates occurred throughout the United States; however, reported rates from the South Atlantic area remained highest for the country.

GONORRHEA

GONORRHEA - Reported penicillinase-producing Neisseria gonorrioeae (PPNG) cases, United States, 1976-1984

PPNG reporting began March 1976.

Gonococcal antimicrobial resistance has assumed increasing importance since the first reported case of penicillinase-producing Neisseria gonorrhoeae (PPNG) occurred in the United States in 1976. Between 1976 and 1982, the number of reported PPNG cases increased from 98 to 4,457 , then decreased to 3,720 in 1983, but increased again in 1984 to 4,110 . In addition to PPNG, chromosomally mediated resistant N. gonorrhoeae (CMRNG) was recognized as an important problem in early 1983, when the first large domestic outbreak occurred in North Carolina. More than 400 cases of CMRNG from 22 other states were reported in 1984. Spectinomycin-resistant N. gonorrhoeae has not yet become a significant problem in this country.

The decline in gonorrhea cases in 1983 may be attributed to one or more of the following: 1) more effective control efforts, 2) improved general surveillance and earlier detection of cases to decrease transmission, 3) variations in reporting, 4) changing biological properties of the gonococcus, 5) changing patterns of host-population susceptibility, or 6) changing sexual behavior within the populations at risk for acquiring gonorrhea. The increase of PPNG cases reported in 1984 resulted from sustained domestic transmission, primarily in three large outbreaks (Los Angeles, New York, Florida).

HEPATITIS - Rates, by year, United States, 1955-1984

In 1984, 57,557 cases of viral hepatitis were reported in the United States, for a rate of 24.4 cases $/ 100,000$ population. This was a slight increase over 1983. Of the total cases, 22,040 (9.3/100,000) were reported as hepatitis $A ; 26,115(11.1 / 100,000)$ as hepatitis $B ; 3,871$ $(1.6 / 100,000)$ as hepatitis non-A, non- B; and $5,531(2.3 / 100,000)$ as hepatitis type unspecified. For the second consecutive year, the reported incidence of hepatitis B was higher than that of hepatitis A. While hepatitis A has continued to decline, hepatitis B has continued to increase, with no change in the age or sex distribution of the cases. Sixty-five percent of cases of hepatitis B are reported in the 20- to 39 -year age group, and the male-to-female ratio remains 2:1.

HEPATITIS

HEPATITIS A

*Based on reported cases per 100,000 population.
The states with the highest rates of hepatitis A in 1984 are concentrated in the West and Southwest; half of these reported communitywide outbreaks, primarily involving person-to-person spread. The states with the highest rates of hepatitis B are clustered primarily on the East and West coasts, as in previous years. Hepatitis non-A, non-B remains a diagnosis of exclusion. The low reported rates for this disease are believed to be due to incomplete serologic testing and underreporting.

*Based on reported cases per 100,000 population.
${ }^{\dagger}$ Not notifiable.

A total of 750 cases of legionellosis were reported to CDC in 1984. Reported cases occurred more commonly in northern and midwestern states, and less commonly in southern states.

Legionellosis may be difficult to diagnose, and underreporting probably occurs. Thus, it is not known whether the reported incidence accurately reflects the true endemic incidence in this country.

LEPROSY

LEPROSY - Cases, by year, United States, 1955-1984

YEAR

Of the 290 cases of leprosy reported in 1984, 258 were imported. The reported occurrence of indigenously acquired leprosy has remained constant since 1970, with approximately 30 cases reported each year. The increase in the total number of reported cases is due entirely to Asian refugees.

LEPTOSPIROSIS - Cases, by year, United States, 1955-1984

For 1984, 40 cases of leptospirosis were reported. Although leptospirosis is usually considered an occupational disease, most reported cases are acquired during avocational activities. Exposure to multiple potential sources of infection is common, but the most probable sources of infection are water, livestock, and domestic pets. The peak in 1964 reflects large, waterrelated outbreaks involving a total of 76 persons.

MALARIA - Rates, by year, United States, 1930-1984

The declining trend in reported cases of malaria from 1980 through 1983 has been reversed. In 1984 there was an 11% increase in cases among US citizens and a 35% increase in cases among foreign-born civilians who had acquired the infection before entering the United States. The increased incidence in U.S citizens was due to a greater number of infections imported from Nigeria. Mexico, and New Guinea, whereas the increase among foreign-born civilians was caused by infections acquired in Mexico and Central America. Only one case, a congenital infection, was acquired in the United States

In 1984, a total of 2,587 cases of measles were reported, for a rate of 1.0 cases/100,000 population. Although the reported occurrence is a 72.8% increase over the record low number of cases reported in 1983, it still represents a 99.5% reduction from the prevaccine era, when an annual average of 525,730 cases were reported in the years 1950-1962.

These dramatic reductions in measles incidence followed the Childhood Immunization Initiative, which began in 1977, and the Measles Elimination Program, which began in 1978. The declines have occurred in all age groups. Since the 1980-1981 school year, over 95\% of entering schoolchildren have provided evidence of immunity to measles (live measles vaccine on or after the first birthday or physician-diagnosed measles). The high immunization levels are due in part to strict enforcement of state school immunization laws.

Fourteen states reported no cases of measles in 1984, and 22 states and the District of Columbia reported no indigenous cases. Seven states accounted for 2,108 (81.5\%) of the 2,587 cases: Texas (642 cases), Michigan (464), California (326), Illinois (186), Washington (178), New York (170), and Hawaii (142). Of the nation's 3.139 counties, only 210 (6.7%) reported any measles cases. In contrast, measles was reported from 988 counties in 1978, when the Measles Elimination Program began. These data indicate that measles had been eliminated from most of the United States by the end of 1984.

*Rates were calculated by multiplying the percentage of cases with known age group by total reported cases and dividing by the population in that age group.

Age data were available for 2,583 (99.8%) cases. The increase in reported measles activity between 1983 and 1984 was seen among all age groups. The greatest increase occurred among persons 10-14 years old, who also had the highest incidence of the disease.

MEASLES

MEASLES (Rubeola) - Age distribution of cases, United States, 1984

Information was provided to the Division of Immunization on importation and prevental for 2,543 cases. A total of 2,340 (92.0%) were acquired within the United States and not associated with an international importation, and 203 (8.0%) were importation-associ (109 international importations and 94 cases spread within two generations of the impc case). A total of 874 cases (34.4%) were classified as preventable.* The highest proportic preventable cases occurred among those 16 months-4 years of age (73.4% of age gr and $\mathbf{2 0 - 2 9}$ years of age (71.4% of age group). However, more than half of all prevent cases occurred among school-age persons (5-19 years old).
*A case is considered preventable if measles occurs in a U.S. citizen who is 1) at least 16 months of 2) born after 1956;3) lacking adequate evidence of immunity to measles (documented receipt o measles vaccine on or after the first birthday, physician-diagnosed measles, or laboratory eviden immunity) ; 4) without a medical contraindication to receiving vaccine; and 5) with no religious or F sophic exemption under state law.

MEASLES

MEASLES (Rubeola) - Age distribution of cases, United States, 1984

Information was provided to the Division of Immunization on importation and preventability for 2,543 cases. A total of $2,340(92.0 \%)$ were acquired within the United States and were not associated with an international importation, and 203 (8.0%) were importation-associated (109 international importations and 94 cases spread within two generations of the imported case). A total of 874 cases (34.4%) were classified as preventable.* The highest proportion of preventable cases occurred among those 16 months-4 years of age (73.4% of age group) and 20-29 years of age (71.4% of age group). However, more than half of all preventable cases occurred among school-age persons (5-19 years old).

[^4]
MENINGOCOCCAL INFECTIONS

MENINGOCOCCAL INFECTIONS - Rates, by year, United States, 1930-1984

YEAR

In 1984, 2,746 cases of meningoccal infection were reported in the United States. The case rate of 1.2 cases $/ 100,000$ population was identical to the rate for 1983. Age-specific attack rates peaked at 17.1 cases $/ 100,000$ among infants under 1 year of age and declined to 5.2 cases/100,000 among children 1-4 years of age. Approximately 50\% of reported cases affected children under 5 years of age. The peak of reported cases occurred in late winter and early spring. Only six cases were reported among members of the military service.

In 1984, a total of 3,021 cases of mumps were reported to CDC from 45 states. The incidence of 1.3 cases $/ 100,000$ population was the lowest reported since mumps became a nationally notifiable disease in 1968. This figure is 10% lower than the 1983 total of 3,355 cases and represents a 98% decrease from the total in 1968, the year after licensure of mumps vaccine. Twenty-five states reported fewer cases of mumps in 1984 than in 1983. The number of counties reporting cases of mumps decreased slightly between 1983 (726, 23.1%) and 1984 (700, 22.3\%). Further declines in the incidence of reported mumps can be expected as more children entering school are required to provide proof of immunity to mumps.

-Rates were calculated by multiplying the percentage of cases with known age group by total reported cases and dividing by the population in the age group.

Age-specific data were available for 2,654 (88\%) of the cases reported for 1984. As in 1982 and 1983, approximately three-fourths of mumps patients of known age reported in 1984 were under 15 years of age. Children 5-9 years of age had the highest incidence (5.9/100,000 population) in 1984. Persons 10-14 years of age had the next highest incidence of disease. Together, children 5-14 years of age accounted for 61% of all cases with known age. Although the reported incidence rose 4\% for persons 10-14 years of age and remained stable for persons $15-19$ years of age, other age groups reported declines of 16\%-18\% compared with 1983.

MUMPS - Age distribution and incidence* of reported mumps cases, United States, 1982-1984

Age group (years)	1982			1983			1984			Percentage rate change 1982-1984
	No.	\%	Rate	No.	\%	Rate	No.	\%	Rate	
<1	27	0.7	0.7	16	0.8	0.7	37	1.4	1.2	+71
1-4	339	8.7	3.4	317	15.3	3.6	364	13.7	2.9	-15
5-9	1.058	27.0	8.9	708	34.1	7.2	842	31.7	5.9	-34
10-14	1,523	38.9	11.4	535	25.8	4.8	771	29.1	5.0	-56
15-19	611	15.6	4.2	249	12.0	2.0	335	12.6	2.0	-52
$\geqslant 20$	355	9.1	0.3	249	12.0	0.3	305	11.5	0.2	-33
Total known age	3,913	74.3		2,074	61.8		2,654	87.9		
Total unknown age	1,357	25.7		1,281	38.2		367	12.1		
Grand total	5,270	100.0	2.3	3,355	100.0	1.4	3,021	100.0	1.3	-43

[^5]
PERTUSSIS

PERTUSSIS (Whooping cough) - Rates, by year, United States, 1957-1984

*Data not available for 1984.

A total of 2,276 cases of pertussis were reported in the United States in 1984, a decrease of 8% from 1983. Between 1974 and 1984, the annual number of reported cases ranged from 1,010 to 2,463 . Because of problems in the clinical and laboratory diagnosis of pertussis and because of different case criteria used by the individual states, it is likely that many cases of pertussis in the United States go unreported.

-Based on reported cases per 100,000 population.

Only North Dakota and the District of Columbia did not report cases of pertussis in 1984. Seven states reported 100 or more cases-Washington (326), Indiana (259), Oklahoma (247), California (163), New York (129), Wisconsin (114), and Hawaii (102) -and accounted for $1,340(59 \%)$ of the 2,276 cases.

PERTUSSIS

PERTUSSIS (Whooping cough) - Rates,* by age group, United States, 1984

-Rates were calculated by multiplying the percentage of cases with known age group by total reported cases and dividing by the population in that age group.

Because of the continued high level of vaccine coverage-95\% or greater of all children entering school since 1981 -the overall risk of pertussis remains small. However, $\mathbf{6 2 \%}$ of 2,276 reported cases in 1984 were in persons less than 5 years old, and 38% were in those less than 1 year old. Supplementary information on 1,968 pertussis cases with onset in 1984 indicates that among the $840(43 \%)$ of these patients who were less than 1 year old, 613 (73%) were hospitalized, 209 (25\%) had pneumonia, 28 (3\%) had at least one seizure, and 11 (1\%) died. Pertussis remains a disease with substantial health impact, particularly among infants. Further reduction in the incidence of the disease requires continued efforts to ensure ageappropriate administration of DTP vaccine, especially among infants, as recommended by the Immunization Practices Advisory Committee.

PLAGUE - Cases in humans, by year, United States, 1955-1984

Thirty-one cases of human plague were reported in the United States during 1984, more than twice the average annual incidence in the period 1973-1982 (13.9 cases/year), but fewer than the 40 cases reported during 1983. Six (19.4\%) of the cases were fatal. Patients ranged in age from 14 months to 70 years, but unlike previous years, most cases occurred in persons older than 20 years. One case occurred in the 0 - to 9 -year age group, and nine in the 10 - to 19 -year age group. Twenty-three of the patients (74.2%) were male. Four patients contracted secondary plague pneumonia and were potentially infective to others via the respiratory route. Two patients had plague meningitis and four presented with primary plague septicemia. The remaining patients had bubonic plague.

As in past years, most of the patients were exposed to infection in New Mexico (16 cases, 51.6%). California reported six cases, a record number since 1924; Colorado reported three cases; and Arizona and Utah, two cases each. Texas reported one case, its second indigenous case since 1920; and Washington reported one case, its first case since 1913 and the first outside the Seattle-King County area. One New Mexico patient was hospitalized and died in southern Colorado.

In contrast to recent years, only four (12.9\%) of the 31 cases occurred in American Indians; all four were Navajo. American Indians accounted for 52.5\% of the cases in 1983, 47.4\% of the cases in 1982, and 46.2% of the cases in 1981. The attack rate for Navajos in 1984 was reduced to 2.6 cases/100,000 population from the rate of $12.1 / 100,000$ in 1983.

Evidence of plague infection was detected among mammals and their fleas in 11 western states during 1984.

POLIOMYELITIS

POLIOMYELITIS (Paralytic) - Rates, by year, United States, 1951-1984

YEAR

The incidence of paralytic poliomyelitis declined rapidly following the introduction and widespread use of inactivated poliovirus vaccine in 1955 and of oral poliovirus vaccine (OPV) in 1961. In the period 1973-1984, an average of 12 cases of paralytic poliomyelitis were reported each year. Eight cases were reported in 1984.

Of the 138 paralytic poliomyelitis cases reported with onset of illness during the period 1973-1984, 85 (62\%) were classified as vaccine-associated and occurred in individuals with no known deficiencies in immune status. Thirty-five (41%) of the 85 cases were in OPV recipients, and the remaining 50 cases were in persons who were known contacts of OPV recipients. Fourteen cases occurred in immune-deficient individuals; 13 were vaccine-associated (11 in OPV recipients and two in contacts). An additional 16 (11\%) cases occurred in individuals without a known temporal exposure to either the vaccine or a vaccine recipient, six had poliovirus isolates characterized as vaccine-like, eight had isolates that were characterized as wild, and in two cases no virus was isolated. Only 10 (7\%) epidemic cases occurred, all in 1979, and 13 (10%) were classified as imported. The last case of paralytic poliomyelitis caused by wild virus in the United States was in an immune-deficient individual in 1981.

POLIOMYELITIS (Paralytic) - Reported cases, by area and age group, United States, 1984

		Age in years					
Area	Total	$<\mathbf{1}$	$\mathbf{1 - 4}$	$\mathbf{2 0 - 2 4}$	$\mathbf{2 5 - 2 9}$	$\mathbf{4 0 - 4 9}$	
United States	8	4	1	1	1	1	
California	1	-	1	-	-	-	
Louisiana	1	1	-	-	-	-	
Maryland	1	-	-	-	-	1	
Minnesota	1	1	-	-	$1+$	-	
Pennsylvania	2	-	-	1	-	-	
Tennessee	1	1	-	-	-	-	
Texas	1	1	-	-			

*Onset of illness in 1982.
$\dagger_{\text {Imported case. }}$

Eight cases of paralytic poliomyelitis were reported for 1984; one patient, a recipient of OPV, had onset of illness in 1982. Of the seven cases with onset in 1984, six were classified as endemic: three patients were recipients of OPV, one was a household contact of an OPV recipient, and one was an immune-deficient, non-household contact of an OPV recipient. One case was classified as not vaccine-associated. This patient had a history of contact with an OPV recipient who had been vaccinated 69 days before." A vaccine-related poliovirus was isolated from this patient. Vaccine-related polioviruses were also isolated from two of the OPV recipients, the household contact, and the immune-deficient patient. The one imported case occurred in a patient whose illness began outside the country.

[^6]
PSITTACOSIS

PSITTACOSIS - Cases, by year, United States, 1955-1984

The number of reported cases of psittacosis (172 cases in 1984) appears to have stabilized for the past 7 years at a level about double that for the 1960s. Although most reported cases were associated with exposure to pet birds, outbreaks among employees of the turkeyprocessing industry accounted for many of the human cases reported in 1974, 1976, 1981, and 1984.

RABIES - Cases in wild and domestic animals, by year, United States, 1965-1984

Three cases of human rabies were reported in 1984. Two cases (Texas, Pennsylvania) occurred in children with no known history of exposure to a rabid animal. The third case involved a Guatemalan exposed in Guatemala and diagnosed in California.

There were 5,627 reported cases of animal rabies in the United States and Puerto Rico in 1984, a decline of 301 cases from 1983. Fewer rabies cases were reported for most species.

RABIES
RABIES - Reported cases in animals, by area and species of animal, United States, 1984

Area	Total	Domestic				Wild				
		Cattle	Cats	Dogs	Other domestic	Skunks	Raccoons	Bats	Foxes	Other wild
United States	5,567	152	135	85	59	2,081	1.820	1,038	139	58
New England	59	-	1	-	-	-	-	38	20	-
Maine	20	-	-	-	-	-	-		20	
N.H.	17	-	1	-	-	-	-	16	-	-
V t.	-	-	-	-	-	-		14	-	-
Mass.	14	-	-	-	-	-	-	14	-	-
R.I.	-	-	-	-	-	-	-	8	-	-
Conn.	8	-	-	-	-	-	-	8	-	-
Mid. Atlantic	556	10	9	3	2	49	281	142	48	12
N.Y.	137	7	5	1	-	11	-	72	40	1
N.J.	35	-	-	-	-	-	1	35	-	11
Pa .	384	3	4	2	2	38	281	35	8	11
E.N. Central	216	22	5	8	4	100	-	73	3	1
Ohio	27	2	-	1	2	4	-	17	1	-
Ind.	23	2	2	1	-	10	-	8	-	-
III.	73	8	1	2	1	43	-	16	1	1
Mich.	22	-	2	4	-	2	-	20	\checkmark	-
Wis.	71	10	2	4	1	41	-	12	1	-
W.N. Central	783	79	46	37	22	552	6	37	1	3
Minn.	104	8	5	6	1	75	1	8	-	-
lowa	152	23	11	12	6	91	-	8	1	$\overline{1}$
Mo.	70	2	3	1	-	50	-	13	-	1
N. Dak.	138	18	8	6	3	100	2	1	-	2
S. Dak.	218	26	12	12	7	157	1	1	-	2
Nebr.	48	1	2	-	1	40	1	3	-	-
Kans.	53	1	5	-	4	39	1	3	-	-
S. Atlantic	1,810	6	29	5	1	78	1,460	163	43	25
Del.	6	-	-	-	-	-	-	5	-	1
Md.	1100	2	15	1	1	32	964	46	19	20
D.C.	12	-	-	-	-	-	12	-	-	-
Va .	208	2	3	-	-	22	158	11	11	1
W. Va.	41	-		-	-	4	27	6	4	-
N.C.	27	-	-	-	-	2	-	25	-	-
S.C.	67	-	3	2	-	1	43	17	1	-
Ga .	200	2	7	1	-	16	164	5	5	-
Fla.	149	-	1	1	-	1	92	48	3	3
E.S. Central	280	2	6	11	4	104	66	78	8	1
Ky.	53	1	1	7	3	27	-	7	6	1
Tenn.	82	1	-	2	-	65	-	13	1	-
Ala.	130	-	5	2	1	12	66	43	1	-
Miss.	15	-	-	2	-	12	6	15	-	-
W.S. Central	991	27	33	17	23	727	3	153	6	2
Ark.	101	2	2	1	-	80	-	16	-	-
La.	67	-	3	-	-	49	-	15	-	-
Okla.	104	9	9	7	1	72	1	4	-	1
Tex.	719	16	19	9	22	526	2	118	6	1
Mountain	298	3	5	1	3	148	4	134	-	-
Mont.	122	3	3	1	2	109	4	-	-	-
Idaho	11	-	-	-	-	-	-	11	-	-
Wyo.	30	-	1	-	-	12	-	17	-	-
Colo.	44	-	-	-	-	-	-	44	-	-
N. Mex.	12	-	1	-	1	8	-	2	-	-
Ariz.	50	-	-	-	-	19	-	31	-	-
Utah	6	-	-	-	-	-	-	6	-	-
Nev .	23	-	-	-	-	-	-	23	-	-
Pacific	574	3	1	3	-	323	-	220	10	14
Wash.	3	-	-	-	-	-	-	3	-	-
Oreg.	7	-	1	-	-	-	-	6	-	-
Calif.	546	3	-	2	-	323	-	211	5	2
Alaska	18	-	-	1	-		-	-	5	12
Hawaii	-	-	-	-	-	-	-	-	-	-
Guam	-	-	-	-	-	-	-	-	-	-
P.R.	60	2	5	12	3	1	-	-	-	37
V.I.	-	-	-	-	-	-	-	-	-	-

In 1984, the total of 752 cases of rubella reported in the United States was the lowest since rubella became a nationally notifiable disease in 1966. The represents a decrease of 22.5\% from the 1983 total of 970 cases and a 98.7% decline from 1969, the year of rubella vaccine licensure. The reported incidence for 1984 is 0.32 cases $/ 100,000$ population.

Twelve states and the District of Columbia reported no rubella cases in 1984, compared with 14 reporting areas in 1983 . The number of counties reporting rubella continued to decline from 284 (9.0\%) in 1983 to 219 (7.0\%) in 1984.

RUBELLA

RUBELLA (German measles) - Estimated* rates, by age group, United States, 1982-1984

[^7]The 1984 reported age-specific incidences of rubella declined or remained constant for all age groups. Children $0-4$ years of age continued to have the highest overall incidence (1.4 cases $/ 100,000$ population) and accounted for one-third of all cases with age reported. Incidence declined by 25% in persons under 15 years old. The incidence for persons 15 years of age or older, who accounted for 48\% of the cases, declined by 13\% between 1983 and 1984 as a result of continued efforts to identify and vaccinate susceptible persons of childbearing age, particularly postpubertal females.

RUBELLA (German measles) - Age distribution and incidence* of reported rubella cases, United States, 1982-1984

Age group (years)	1982			1983			1984			Percentage rate change 1982-1984
	No.	\%	Rate	No.	\%	Rate	No.	\%	Rate	
<1	177	8.5	5.4	127	15.0	4.0	110	16.2	3.4	-37
1-4	249	12.0	2.0	149	17.6	1.2	114	16.8	0.9	-55
5-9	214	10.3	1.5	102	12.1	0.7	85	12.5	0.6	-60
10-14	155	7.4	1.0	93	11.0	0.6	44	6.5	0.3	-70
15-19	288	13.8	1.6	95	11.2	0.6	65	9.6	0.4	-75
20-24	375	18.0	1.9	117	13.8	0.6	115	16.9	0.6	-68
25-29	298	14.3	1.6	83	9.8	0.5	70	10.3	0.4	-75
$\geqslant 30$	327	15.7	0.3	80	9.5	0.1	76	11.2	0.1	-67
Total known age	2,083	89.6		846	87.2		679	90.3		
Total unknown age	242	10.4		124	12.8		73	9.7		
Grand Total	2,325	100.0	1.0	970	100.0	0.4	752	100.0	0.3	-70

-Reported number of cases per 100,000 population, extrapolated from the age distribution of cases with known age.

RUBELLA

RUBELLA - Incidence of reported rubella and of congenital rubella syndrome (CRS), United States, 1966-1984

*Includes proration of cases of unknown age in $\geqslant 15$-year-olds.
${ }^{\dagger}$ Rate per 100,000 births of confirmed and compatible cases of CRS by year of birth. Reporting for recent years is provisional, as cases may not be diagnosed until later in childhood.

- Average annual United States estimate based on data from Illinois, Massachusetts, and New York City for the 3 -year periods 1966-1968, 1969-1971, and 1972-1974. Age-specific data were not available for U.S. totals until 1975.

Recent declines in rates of congenital rubella syndrome (CRS), recorded by the National Congenital Rubella Syndrome Register (NCRSR), parallel the decline in overall rubella incidence and, more specifically, in the incidence for persons 15 years of age or older. In the period 1979-1984, the reported rate of rubella among persons in this group declined 96%, from 4.8 to 0.2 cases $/ 100,000$ population. Similarly, reported data showed that 57 confirmed and compatible cases of CRS occurred in 1979 and that only two such cases occurred in 1984 (a 96% decline). The number of cases of CRS declined by 72% between 1983 (seven cases) and 1984.* It is important to note, however, that although there have been decreases in the number of reported cases of CRS, the reported figure is believed to underestimate the actual total.

[^8]SALMONELLOSIS (excluding typhoid fever) — Rates, by year, United States, 1955-1984

A slight decrease in reported cases of human salmonellosis was noted in 1984. This decrease most likely represents annual variation rather than a reversal of the secular trend toward increasing rates of salmonellosis in the United States. This steady increase in reported rates is thought to reflect increasing incidence of the disease rather than more efficient reporting. Thirty-six percent of all salmonellosis cases reported with known age in 1984 occurred in children less than 5 years old, although the rate of increase in reported cases of salmonellosis was greater once again in 1984 among older age groups.

SHIGELLOSIS

SHIGELLOSIS - Rates, by year, United States, 1955-1984

For 1984, 17,371 cases of shigellosis were reported in the United States. Approximately 70\% of the Shigella isolates reported to CDC each year are Shigella sonnei, with Shigella flexneri accounting for a large percentage of the rest. Contrasting Salmonella and Shigella infections shows that Salmonella is most frequently isolated from children less than 1 year of age, whereas Shigella is most commonly isolated from 2-year-olds. The two highest peaks in incidence of Shigella infections during the past decade are unexplained.

SYPHILIS (Primary and secondary) - Rate for civilians, by year, United States, 1941-1984*

*1941-1946 fiscal years (12-month period ending June 30); 1947-1984 calendar years.

Syphilis is still the third most frequently reported communicable disease in the United States, exceeded only by varicella and gonorrhea. Since the initiation of national syphilis control efforts in the 1940s, reported cases of all stages of syphilis declined from an all-time high of 575,600 in 1943 to 69,888 in 1984 . However, the trend for reported primary and secondary syphilis has changed direction several times.

After a steady yearly increase since 1977, the total number of cases of infectious syphilis (primary and secondary) decreased 15%, from 33,613 in 1982 to 28,607 in 1984. The rate per 100,000 population decreased from 14.6 in 1982 to 12.2 in 1984.

SYPHILIS

SYPHILIS (Primary and secondary) — Cases, by sex, United States, 1956-1984

The trend in the number of cases of primary and secondary syphilis varies according to sex. For the first time since 1977, the actual number of cases among men decreased for two consecutive years, from 24,988 in 1982 to 20,576 in 1984 (a 17.6% decrease). For women, the number of cases decreased in only 1 year since 1977, from 9,082 in 1983 to 8,031 in 1984 (a 11.6% decrease). However, from 1977 to 1984, rates (cases per 100,000 population) increased 26% for men and 43% for women.

SYPHILIS

SYPHILIS (Primary and secondary) - Case rates, by sex, and congenital syphilis (under 1 year) cases, United States, 1970-1984

-Primary and secondary syphilis.

Trends for early congenital syphilis (CS) have usually paralleled the trends for primary and secondary syphilis among women. In 1984, although the rate of infectious syphilis decreased, the actual number of reported cases of CS increased.

Factors contributing to the sustained level of early CS since 1981 may include an increase in the incidence of early infectious syphilis among pregnant women, lack of availability of prenatal care, and failure of the prenatal-care system to provide timely serologic testing and prompt follow-up. The increase in cases noted in 1984 is attributed to the above factors and also to improved surveillance due to use of a new CS case analysis form.

SYPHILIS

SYPHILIS (Congenitai) - Reported cases, by age group, United States, 1983-1984

	Number of cases		Percentage of total	
Age group	1983	1984	1983	1984
<1	158	247	66.1	75.8
Other ages	81	79	33.9	24.2
Total	239	326	100.0	100.0

Reported cases of congenital syphilis (CS) for all ages decreased from 17,600 in 1941 to 326 in 1984. Neonatal mortality due to syphilis has declined 99% since the 1940 s.

The major decrease in the total number of reported cases of CS has occurred in the number of late CS cases (cases reported for children over 1 year of age). This number has decreased from 1,608 in 1970 to 79 in 1984.

The number of cases of early CS (cases reported for children less than 1 year of age) decreased to 107 in 1978 and then increased slowly in the past 6 years. The proportion of cases of early CS to total cases of CS has steadily increased from 17.7% in 1970 to $\mathbf{7 5 . 8 \%}$ in 1984.

TETANUS - Rates, by year, United States, 1955-1984

The annual tetanus case rate has remained relatively stable since 1976. Seventy-four cases of tetanus were reported in 1984 in the United States. In addition, 10 cases were reported from Puerto Rico. Only two (2.7\%) of the 74 U.S. cases occurred in completely immunized individuals (persons having either completed a primary series or received a booster dose within the last 10 years). An acute injury was identified in 52 (70\%) of the cases. Among the remaining 22 cases not associated with an acute wound, six were associated with an abscess, blister, or infection; three occurred in IV drug users; two were associated with dental conditions; two, with gangrene, and two, with skin ulcers. In seven cases no associated condition was identified.

TETANUS

TETANUS - Reported cases, by age group, United States, 1984

*Includes two neonatal cases

Of the 74 tetanus cases reported in 1984, 39 (53%) occurred in persons 60 years of age or older. This is consistent with serosurvey results indicating that one-half to two-thirds of persons over 60 years of age have inadequate levels of circulating antitoxin. Health-care providers should ensure that their elderly patients complete their tetanus and diphtheria vaccination schedules and should adhere to current recommendations for tetanus prophylaxis during the management of acute wounds. Two cases of tetanus (California, Texas) occurred in neonates, both born to mothers with no known history of prior immunization.

TOXIC-SHOCK SYNDROME - Cases, by month of onset, United States, 1979-1984

As of June 1, 1985, 262 cases of toxic-shock syndrome (TSS) with onset in 1984 had been reported to CDC. This brings to 2,815 the total number of cases that have been reported; with 890, 586, 399, and 321 cases occurring in 1980, 1981, 1982, and 1983, respectively. Of these, 2,669 cases were in females, and 146 were in males. Cases have been reported from all 50 states. Of the 1984 cases, 2.7% were fatal, as were 2.8% in 1983 and 1982, 3.2\% in 1981, and 4.7% in 1980. Nonmenstrual TSS accounted for 27% of the reported 1984 cases, up from 7% in 1980 . TSS continues to be reported primarily among women and among white non-Hispanics.

TOXIC-SHOCK SYNDROME

TOXIC-SHOCK SYNDROME - Cases of menstrual (M) and nonmenstrual (NM) toxicshock syndrome, by month and year of onset*

Month	1979		1980		1981		1982		1983		1984	
	M	NM										
January	12	2	45	5	63	9	32	11	23	5	27	11
February	13	1	34	1	31	5	27	7	18	8	17	9
March	15	1	50	4	53	11	28	3	14	4	22	10
April	18	1	49	3	34	10	25	9	23	9	17	3
May	14	3	72	0	44	7	29	8	23	7	11	4
June	23	3	76	6	45	6	26	5	18	6	16	5
July	15	0	80	3	40	8	22	4	22	11	13	6
August	18	4	124	10	41	15	19	10	13	8	12	5
September	20	3	113	9	28	3	18	7	19	8	11	5
October	26	2	62	8	35	9	24	9	12	10	12	6
November	30	4	61	4	36	8	17	9	17	9	10	3
December	38	3	46	7	19	7	20	6	22	8	13	3
Total	242	27	812	60	469	98	287	88	224	93	181	70

*Excludes cases with unknown or indeterminate menstrual status and cases with unknown month of onset.

TRICHINOSIS - Cases, by year, United States, 1950-1984

YEAR

In 1984, 68 cases of trichinosis were reported through the MMWR morbidity surveillance system. Written case reports were submitted by 13 states for 65 cases fitting the CDC case definition. Seventy-five percent of the cases occurred in five states: New Jersey reported 17 cases (26\%); Texas, 11 (17\%); California, eight (12\%); Connecticut, seven (11\%); and Massachusetts, six (9\%). Other reporting states were New York (four), Pennsylvania (four), Alaska (three), Hawaii (one), Maine (one), North Carolina (one), Utah (one), and Virginia (one). The male/female ratio of these 65 cases was essentially equal. The mean age of patients was 34 years, with a range of 3-73. The infective meat item was identified in 60 of the 65 cases. Pork was incriminated in 53 cases (82%), and bear meat in six (9%). Sausage was the most frequently implicated form of pork (43%). In 22 cases, the implicated meat was obtained from a commercial outlet such as a supermarket or butcher shop; in 11 cases, it was obtained directly from the farm; and in seven cases (involving the ingestion of feral swine and bear meat), through hunting. Eight common-source outbreaks were identified, involving a total of 40 cases. Of note was an outbreak among a group of Laotians living in Texas, which involved 12 people. One death was attributed to trichinosis, the first reported since 1981.

TUBERCULOSIS

TUBERCULOSIS - Reported cases and deaths, United States, 1953-1984

[^9]In 1984, 22,255 cases of tuberculosis were reported to CDC, for a rate of 9.4 cases $/ 100,000$ population. This represents a 6.7% decrease from the number of reported cases in 1983, and a 7.8% decline in the case rate. From 1968 through 1978, the average annual decrease in the number of tuberculosis cases in the United States was 5.6%. From 1978 through 1981, when there was a large influx of Southeast Asian refugees, the average annual decline was only 1.4%. A 6.8% decrease in the number of cases in 1982, a 6.6% decrease in 1983, and the 6.7% decrease in 1984 indicate that the previous downward trend has resumed. Contributing factors to the decline in 1984 include 1) participation of almost all states in a new national case reporting system, requiring more accurate verification of cases and 2) a decline in the actual number of indigenous cases.

Final mortality data on tuberculosis for 1982 show 1,807 deaths. This is a 6.7% decrease from 1981, when 1,937 deaths were reported. The mortality rate in 1982 was 0.8 deaths/100,000 population.

TUBERCULOSIS

TUBERCULOSIS - Rates, by state, United States, 1984

In 1984, rates for the 50 states ranged from 21.0/100,000 population in Hawaii to $1.0 / 100,000$ population in Wyoming. In general, the southeastern states and the states on the United States-Mexico border reported the highest case rates; rates were generally higher east of the Mississippi.

TUBERCULOSIS

TUBERCULOSIS - Rates, by age group, race, and sex, United States, 1984

For all race-sex categories, the case rate was lowest for persons $10-14$ years old and was highest for persons 65 years old or older. Rates were highest for males of races other than white, followed by females of races other than white, white males, and white females.

Transmission of tuberculous infection continues to occur, as evidenced by the occurrence of disease among young children. In 1984, 1,236 tuberculosis cases were reported among children under 15 years of age, including 759 cases among children under 5 years of age.

TULAREMIA - Rates, by year, United States, 1955-1984

TULAREMIA - Cases, by county, United States, 1984

The general upward trend in the reported occurrence of tularemia from 1978 through 1984 appears to have stabilized at approximately 300 cases per year. Geographic distribution of the tularemia cases reported for 1984 is similar to that of previous years.

TYPHOID FEVER

TYPHOID FEVER - Rates, by year, United States, 1955-1984

Large outbreaks of typhoid fever occurred in Florida in 1973 and in Texas in 1981. For 1984, 390 cases were reported. Approximately 70\% of the cases reported in the United States are acquired during foreign travel. The source of domestically acquired typhoid is usually a person who is a chronic carrier of Salmonella typhi, but in recent years some infections have been acquired in laboratories.

TYPHUS FEVER, FLEA-BORNE (endemic, murine) - Cases, by year, United States, 1955-1984

For 1984, 53 cases of murine typhus were reported from six states. Thirty-seven of the cases were reported from Texas, eight from California, and five from Hawaii.

TYPHUS FEVER

TYPHUS FEVER, TICK-BORNE (Rocky Mountain spotted fever) - Rates, by year, United States, 1955-1984

A total of 838 cases of Rocky Mountain spotted fever were reported to CDC in 1984, for a rate of 0.36 cases/100,000 population.

TYPHUS FEVER, TICK-BORNE (Rocky Mountain spotted fever) - Cases, by county,

In 1984, 25\% fewer cases of Rocky Mountain spotted fever were reported than in 1983, and all states reporting over 10 cases in 1984 reported either a decrease or no change in number of cases compared with 1983.

VARICELLA

VARICELLA (Chickenpox) - Rates, by month, United States, 1980-1984

In 1984, 221,983 cases of varicella (chickenpox) were reported from 33 states and the District of Columbia. These reports make varicella the second most frequently reported infectious disease (with gonorrhea being first) in the United States. The reported incidence, based on the population of the 34 reporting areas, is 138 cases $/ 100,000$ population. As in prior years, the incidence in 1984 peaked between March and May. While the reported incidence increased 25% between 1983 and 1984, such increases have been noted in the past. There appears to be no predictable pattern to these changes in reported varicella activity.

VARICELLA（Chickenpox）－Reported cases，by area and age group，selected areas， 1984

＊Does not include cases reported by Connecticut and Massachusetts
Does not include cases reported by Connecticut．
Does not include cases reported by Connecticut and Texas．
Does not include cases reported by Massachusetts and Texas
＂Does not include cases reported by Hlinois，Massachusetts，and Texas
${ }^{\dagger}{ }^{\text {D Does not include cases reported by llinois and Texas．}}$

Age－specific data on reported cases of varicella were available from nine states．Cases with known age accounted for only 28\％ of all reported cases．On the basis of the data from states reporting by age for 1984，the 5 －to 9 －year age group had the highest incidence and accounted for 56% of reported cases of known age．Fewer than 6% of the patients were 15 years of age or older．

PART 3:

Surveillance Summaries for Non-notifiable Conditions and Subjects of Special Interest

NON-NOTIFIABLE CONDITIONS - Cases of acute conditions optionally reported by certain areas, 1984

Area	Giardiasis	Histoplasmosis	Infectious mononucleosis	Meningitis (Bacterial a unspecified)	Reye syndrome*	Streptococcal sore throat 8 scarlet fever	Toxoplasmosis
No. Cases Reported	26,560	357	5,895	7.725	204	252,205	99
New England	1,589	-	2,286	320	8	45,931	6
Maine	162	-		77	1	1-1	-
N.H.	310	NN	NN	43	-	NN	NN
Vt .	480	NN	194	33	1	NN	6
Mass.	NN	NN	NN	NN	3	14,802	NN
R.I.	-	-	36	59	1	8,760	-
Conn.	637	-	2,056	108	2	22,369	-
Mid. Atlantic	1,968	5	2,602	1.137	${ }^{23}+$	4,016	12
N.Y. (excl. NYC)	NN	3	2,602	408	15^{\dagger}	NN	NN
N.Y.C.	-	-	,	327	-	4,016	5
N.J.	NA	NA	NA	NA	1	NA	NA
Pa.	1,968	2	-	402	7	NA	7
E.N. Central	5.136	38	-	1,696	45	64,767	2
Ohio	397	-	-	426	20	14,170	1
ind.	445	-	-	256	-	28,190	-
III.	2,030	26	-	406	5	22,407	1
Mich.	892	8	NN	376	12	NN	NN
Wis.	1,372	4	NN	232	8	NN	-
W.N. Central	2,652	124	213	538	23	14,993	20
Minn.	518	25	-	175	8	-	-
lowa	403	19	182	124	2	-	NN
Mo.	462	74	23	51	9	NN	20
N. Dak.	50	-	NN	30	-	NN	NN
S. Dak.	253	-	8	53	1	3.123	-
Nebr.	389	-	NN	47	2	3,871	NN
Kans.	577	6	-	58	1	7.999	-
S. Atlantic	1,628	62	366	1.627	25	28,629	25
Del.	89	1	NN	24	2	785	NN
Md.	97	-	2	231	-	12,868	-
D.C.	1	-	-	21	1	15	-
Va .	254	24	-	224	5	-	2
W. Va.	39	-	364	92	4	11.934	-
N.C.	NN	NN	NN	228	4	NN	NN
S.C.	-	16	NN	39	1	NN	1
Ga .	-	18	-	-	3	3,027	17
Fla.	1.148	3	NN	768	5	NN	5
E.S. Central	1,766	89	270	342	4	8.129	1
Ky.	119	2	215	143	1	5,384	1
Tenn.	NN	NN	NN	NN	-	NN	NN
Ala.	1,277	81	NN	120	2	NiN	NN
Miss.	370	6	55	79	1	2.745	-
W.S. Central	747	35	-	935	38	37,310	2
Ark.	121	17	-	49	4	31	1
La.	NN	-	-	NN	3	NN	-
Okla.	368	8	-	49	13	-	1
Texas	258	10	NN	837	18	37.279	NN
Mountain	3,502	1	114	512	14	20,503	1
Mont.	148	NN	72	17	-	2,768	NN
Idaho	350	-	NN	85	2	NN	-
Wyo.	16	-	-	25	-	13,365	-
Colo.	932	-	NN	168	4	NN	1
N. Mex.	160	-	NN	-	3	NN	-
Ariz.	1.432	-	-	74	3	-	-
Utah	350	1	34	111	2	4,249	-
Nev .	114	-	8	32	-	121	-
Pacific	7.572	3	44	618	17	27.925	30
Wash.	710	NN	NN	157	2	NN	-
Oreg.	1,057	-	NN	115	3	NN	NN
Calif.	5.498	3	14	274	11	24,952	30
Alaska	307	-	-	36	-	NN	-
Hawaii	-	-	30	36	1	2,973	-
Guam	8	-	1	7	-	719	-
P.R.	2	-	55	171	-	79	-
V.I.	7	-	-	10	-	11	-
Pac. Trust Terr.	NA	NN	NN	5	-	52	NN
CNMI	1	-	-	-	-	44	-
Amer Samoa	NN	NN	NN	1	-	NN	-

[^10]
NON-NOTIFIABLE CONDITIONS

NON-NOTIFIABLE CONDITIONS - Cases of acute conditions optionally reported by certain areas, 1984 (continued)

Fungal diseases

Actinomycosis Blastomycosis	$\begin{aligned} & \text { S.Dak. 1; Va. } 1 \\ & \text { Ark. 12; II. } 3 \text {; lowa 6; Ky. } 1 \text {; Minn. 3; Miss. 9; Mo. 2; N.C. 12; N. Dak. 1; S.C. 2; S. Dak. } 1 \text {; Va. } 12 \text {; } \\ & \text { Wis. } 38 \end{aligned}$
Coccidioidomycosis	Ariz. 211 ; Ark. 1 ; Calif. 414 ; II. 1 ; lows 1; Minn. 11 ; Mo. 1; N. Mex. 1 ; N. Dak. 1; Okla. 2; S. Dak. 1 ; Tex. 4; Utah 4; Vt. 1; Va. 4
Cryptococcosis	Ariz. 1; Fla. 1; Ga. 2; III. 11 ; Minn. 9; Mo. 8; Ohio 9; Okla. 3; Pa. 18; S.C. 15; S. Dak. 1; Va. 4
Nocardiosis	Minn. 4; Mo. 6; Nev. 1; Va. 9; V.I. 1

Rickettsial diseases

Q fever Calif. 4; Idaho 8; Mich. 2; Mo. 1 ; N. Mex. 1; Wis. 1

Viral diseases

Colorado tick fever
Colo. 77; Idaho 3; Mont. 18; Utah 23; Wyo. 9

Conditions included in this table are not officially notifiable to the Centers for Disease Control but are reported optionally by some states. These data should be used with great caution and should in no way be considered a representative national sample. A summary of every optionally reported condition is not included because of the limitations of space and infrequency of reports. Unpublished data will be made available to individuals on specific request.

CONDYLOMATA ACUMINATA - Consultations for condylomata acuminata, United States, 1966-1983

The occurrence of condylomata acuminata, also known as genital warts, has increased dramatically over the last decade. Data compiled by the National Disease and Therapeutic Index, a survey of private, office-based physicians in the United States, indicate that the number of consultations for genital warts increased by 580\% between 1966 (169,000 consultations) and 1983 (over 1.1 million consultations). Data from public sexually transmitted disease (STD) clinics also show that genital wart virus infections are a major public health problem and indicate that these infections may be the most common viral STD in the United States.

CONGENITAL MALFORMATIONS - Number of monitored total (live and still) births, by U.S. Census Region (including Puerto Rico), Birth Defects Monitoring Program,* 1979-1983

Census region	1983	19821	1981	1979	
Northeast	123,827	118,076	115,005	120,324	174,435
North Central	284,160	307,208	323,984	306,371	405,577
South \dagger	181,972	210,245	231,620	208,088	263,360
West	170,341	187,742	194,050	134,959	186,898
Total, United States					

*Discharge data reported by participating hospitals through the Commission on Professional and Hospital Activities, Ann Arbor, Michigan.
Includes Puerto Rico.

The birth defects data reported here are selected from those collected through the Birth Defects Monitoring Program (BDMP), which is conducted by CDC with data provided under contract by the Commission on Professional and Hospital Activities (CPHA). The primary purpose of the BDMP is to monitor the incidence of birth defects and other conditions in neonates. Since 1970, data on births of over 13 million infants have been included in the BDMP. The current annual number of births included is 760,300 from 928 hospitals-about 21% of the births in the United States. For the period covered in this report, the incidence of most birth defects neither substantially increased nor decreased. Several defects, however, did show noteworthy patterns.

The most striking changes in reported incidence in the period 1978-1983 continue to be in the rates for two cardiovascular defects, ventricular septal defect (VSD) and patent ductus arteriosus (PDA). Over the 5 -year period, the rate for VSD increased 44%, and that for PDA increased 60%. Since 1970, the reported incidences of these two malformations have more than tripled. The reasons for these increases are unknown, but better ascertainment, especially of minor or transient defects, could be a contributing factor.

The reported incidence of renal agenesis has increased substantially since 1970. This category has increased an average of 7.4% per year, and the rate for this rare defect has doubled. It is possible that new diagnostic procedures or more autopsies are identifying more cases. To clarify the increase, a descriptive epidemiologic study of 1,700 cases reported to the BDMP between 1970 and 1983 has been started.

The previously reported declines in the incidence of anencephaly and spina bifida continue to be observed. The decreases in these two serious, environmentally caused defects remain unexplained and do not appear to be related to prenatal diagnosis.

CONGENITAL MALFORMATIONS - Reported incidence of selected congenital malformations, by U.S. Census Region (including Puerto Rico), Birth Defects Monitoring Program,* 1979-1983

Malformation/census region	1983		1982		1981		1980		1979	
	No.	Rate ${ }^{7}$	No.	Rate ${ }^{7}$	No.	Rate ${ }^{\dagger}$	No.	Rate ${ }^{\dagger}$	No.	Rate ${ }^{\dagger}$
Anencephaly										
Northeast	38	3.1	41	3.5	42	3.7	45	3.7	58	3.3
North Central	87	3.1	100	3.3	111	3.4	95	3.1	157	3.9
South§	50	2.7	63	3.0	92	4.0	79	3.8	96	3.6
	53	3.1	66	3.5	57	2.9	34	2.5	60	3.2
Total, United States ${ }^{\mathbf{8}}$	228	3.0	270	3.3	302	3.5	253	3.3	371	3.6
Spina bifida w/out anencephaly										
Northeast	52	4.2	52	4.4	58	5.0	45	3.7	92	5.3
North Central	127	4.5	145	4.7	171	5.3	159	5.2	203	5.0
South§	112	6.2	126	6.0	142	6.1	145	7.0	141	5.4
	$\begin{array}{r}70 \\ \\ \hline\end{array}$	4.1	73	3.9	66	3.4	54	4.0	80	4.3
Total, United States ${ }^{\mathbf{8}}$	361	4.7	396	4.8	437	5.1	403	5.2	516	5.0
Ventricular septal defect										
Northeast	262	21.2	249	21.1	203	17.7	176	14.6	221	12.7
North Central	472	16.6	438	14.3	465	14.4	347	11.3	444	10.9
South§	209	11.5	242	11.5	267	11.5	216	10.4	234	8.9
West ${ }^{\text {¢ }}$	257	15.1	282	15.0	258	13.3	170	12.6	234	12.5
Total, United States ${ }^{\mathbf{\$}}$	1,200	15.8	1.211	14.7	1.193	13.8	909	11.8	1,133	11.0
Patent ductus arteriosus										
Northeast	375	30.3	324	27.4	291	25.3	227	18.9	293	16.8
North Central	885	31.1	831	27.1	754	23.3	532	17.4	750	18.5
South§	472	25.9	455	21.6	445	19.2	370	17.8	395	15.0
West ${ }^{\text {¢ }}$	412	24.2	601	32.0	462	23.8	272	20.1	377	20.1
Total, United States ${ }^{\mathbf{8}}$	2,144	28.2	2,211	26.9	1,952	22.6	1,401	18.2	1,815	17.6
Hydrocephalus w/out spina bifida										
Northeast	76	6.1	72	6.1	51	4.4	50	4.2	78	4.5
North Central	182	6.4	148	4.8	180	5.6	129	4.2	179	4.4
South§	113	6.2	134	6.4	145	6.3	101	4.9	124	4.7
	73	4.3	98	5.2	93	4.8	49	3.6	72	3.9
Total, United States ${ }^{3}$	444	5.8	452	5.5	469	5.4	329	4.3	453	4.4
Cleft palate w/out cleft lip										
Northeast	67	5.4	56	4.7	58	5.0	48	4.0	73	4.2
North Central	169	5.9	141	4.6	173	5.3	161	5.3	219	5.4
South§	98	5.4	93	4.4	110	4.7	95	4.6	137	5.2
	101	5.9	95 385	5.1	108	5.6	72	5.3	104	5.6
Total, United States ${ }^{3}$	435	5.7	385	4.7	449	5.2	376	4.9	533	5.2
Cleft lip with or w/out cleft palate										
Noriheast	113	9.1	89	7.5	80	7.0	79	6.6	98	5.6
North Central	252	8.9	293	9.5	295	9.1	257	8.4	342	8.4
South§	153	8.4	167	7.9	188	8.1	159	7.6	193	7.3
West ${ }^{\text {S }}$	187	11.0	179	9.5	195	10.0	120	8.9	149	8.0
Total, United States ${ }^{3}$	705	9.3	728	8.8	758	8.8	615	8.0	782	7.6

[^11]Note: This table is continued on the following page.

CONGENITAL MALFORMATIONS - Reported incidence of selected congenital malformations, by U.S. Census Region (including Puerto Rico), Birth Defects Monitoring Program,* 1979-1983 (continued)

Malformation/census region	1983		1982		1981		1880		1879	
	No.	Rate ${ }^{\dagger}$	No.	Rate ${ }^{\dagger}$	No.	Rate ${ }^{\dagger}$	No.	Rate ${ }^{\text {f }}$	No.	Rate ${ }^{\text {F }}$
Clubfoot w/out CNS defects										
Northeast	345	27.9	332	28.1	359	31.2	360	29.9	543	31.1
North Central	899	31.6	905	29.5	874	27.0	907	29.6	1,174	28.9
South§	407	22.4	412	19.6	445	19.2	444	21.3	1.174 533	28.9 20.2
West	387	22.7	368	19.6	364	18.8	252	18.7	399	21.3
Total, United States §	2,038	26.8	2,017	24.5	2,042	23.6	1,963	25.5	2,649	25.7
Reduction deformity										
Northeast	47	3.8	29	2.5	35	3.0	52	4.3	61	
North Central	118	4.2	98	3.2	137	4.2	117	4.3 3.8	145	3.5 3.6
South§	61	3.4	72	3.4	78	3.4	72	3.5	85	3.2
West Total United States §	83	4.9	76	4.0	61	3.1	52	3.9	74	4.0
Total, United States	309	4.1	275	3.3	311	3.6	293	3.8	365	3.5
Tracheo-esophageal fistula										
Northeast	15	1.2	33	2.8	23	2.0	24	2.0	35	2.0
North Central	48	1.7	61	2.0	58	1.8	67	2.2	69	1.7
	26	1.4	24	1.1	40	1.7	35	1.7	41	1.6
Westal, United States ${ }^{\text {T }}$	47 136	2.8	30 148	1.6	56	2.9	26	1.9	38	2.0
Rectal atresia and stenosis										
Northeast	52	4.2	39	3.3	38	3.3	50	4.2	63	3.6
North Central	80	2.8	87	2.8	125	3.9	108	3.2	124	3.6 3.1
Souths West	58	3.2	66	3.1	69	3.0	66	3.2	80	3.0
West ${ }^{\text {Total, United States }} \S$	61	3.6	59	3.1	70	3.6	36	2.7	54	2.9
	251	3.3	251	3.0	302	3.5	260	3.4	321	3.1
Renal agenesis										
Northeast	29	2.3	23	1.9	22	1.9	11	0.9	18	1.0
North Central	56	2.0	37	1.2	48	1.5	46	1.5	53	1.3
Souths West	30	1.6	46	2.2	25	1.1	25	1.2	30	1.1
West ${ }_{\text {Total, United States }}{ }^{\text {® }}$	23 138	1.4	34	1.8	28	1.4	13	1.0	25	1.3
	138	1.8	140	1.7	123	1.4	95	1.2	126	1.2
Hypospadias										
Northeast	418	65.6	384	63.3	342	57.7	365	58.9	467	52.2
North Central	901	61.8	892	56.7	981	58.9	856	54.5	1,017	48.8
South§ West	489	52.4	480	44.5	557	46.9	488	45.8	610	45.2
West Total, United States ${ }^{\text {§ }}$ §	2449	51.2	458	47.5	469	47.2	308	44.6	473	49.3
Total, United States	2,257	57.8	2,214	52.5	2,349	52.9	2,017	51.1	2,567	48.5
Down syndrome										
Northeast	104	8.4	88	7.5	105	9.1	107	8.9	144	
North Central	255	9.0	260	8.5	236	7.3	227	7.4	332	8.3 8.2
Souths	122	6.7	131	6.2	155	6.7	118	5.7	191	7.3
West Total, United States \S	144 625	8.5	175	9.3	160	8.2	116	8.6	138	7.4
Total, United States	625	8.2	654	7.9	656	7.6	568	7.4	805	7.8

[^12]DENGUE - Confirmed dengue cases imported into United States, 1984, and Aedes aegypti distribution

BREEDING SEASON OF AEDES AEGYPTI
Zone I Year around
Zone if mio-january through mid-december
ZONE III MID-MARCH THROUGH MID-NOVEMBER
ZONE II LATE APRIL through mid-october

In 1984, 67 cases of dengue-like illness were reported to CDC from 30 states. Adequate blood samples were received for 44 cases. Of these, only six were confirmed as dengue infection, and 38 were not dengue. The cause of the remaining 23 cases could not be determined because only single blood samples were received. The illness associated with confirmed imported dengue in the United States in 1984 was relatively mild and of the classical type. No severe hemorrhagic disease was associated with any of the cases.

The six confirmed dengue cases were reported from six states. Serologic evidence indicated that only two serotypes, DEN-1 and DEN-3, were imported into the United States in 1984, in contrast to 1983 when all four dengue serotypes were imported. Dengue virus was not isolated from any of the cases imported into the United States in 1984.

Two cases of confirmed dengue were imported into states (Tennessee and Virginia) where Aedes aegypti may be found at least part of the year. The other four cases were imported into California, Missouri, New York, and Wisconsin. No indigenous transmission of dengue was reported in the continental United States in 1984.

DENGUE

DENGUE - Suspected and confirmed dengue cases imported into the United States, 1984

State	Number of cases reported	Number of cases confirmed	Probable source of infection
Alabama*	5	-	-
Arizona	1	-	-
Arkansas	1	-	-
California	2	1	Mexico
Colorado	1	-	-
Connecticut	1	-	-
Florida*	1	-	-
Georgia*	2	-	-
Hawaii*	3	-	-
llinois	2	-	-
Indiana	1	-	-
Kentucky	1	-	-
Louisiana	1	-	-
Massachusetts	3	-	-
Maine	1	-	-
Michigan	2	-	-
Minnesota	2	-	-
Missouri	2	1	Haiti
New Jersey	2	-	-
New Mexico	2	-	-
New York	11	1	India
Oklahoma	1	-	-
Oregon	1	-	-
Pennsylvania	1	-	-
Tennessee*	4	1	Philippines
Texas*	2	-	-
Utah	1	-	-
Vermont	1	-	-
Virginia ${ }^{\text {- }}$	5	1	Thailand
Wisconsin	4	1	Mexico
Total	67	6	

"States where Aedes aegypti mosquitos are found at least part of the year.

Travel histories of persons with confirmed dengue showed that infection was imported from Caribbean basin countries (Mexico and Haiti) and from Asia (India, Thailand, and the Philippines).

The number of suspected dengue cases imported into the United States in 1984 was the lowest in several years. This small number reflects the decreased epidemic activity in most tropical areas of the world; in Puerto Rico only six cases were confirmed in 1984, and in the U.S. Virgin Islands, only three. Since the level of dengue activity is cyclic, however, it is anticipated that increased epidemic activity will occur in the next year or so. At that time more imported cases can be anticipated in the United States. Many of the southern Gulf States of the United States are still infested with A. aegypti mosquitoes, the principal vector of epidemic dengue. With the repeated introduction of dengue viruses, therefore, there is a constant threat of dengue transmission in those states.

FLUORIDATION - Fluoridation based on population, by source of fluoridated water, United States, 1945-1984

Although the number of people drinking fluoridated water has increased steadily since 1945 and the total U.S. population has increased at nearly the same rate, the total U.S. population on public water supplies has increased at an even greater rate. The significant increase in the percentage of the population drinking public water can be attributed to the rapid urbanization of society over the past 40 years.

FLUORIDATION

FLUORIDATION - Mean DMFS* for children ages 5-17 years, United States, 1971-1973 and 1979-1980

*Decayed, missing (due to caries), and/or filled permanent tooth surfaces.
Source: 1971-1973 National Center for Health Statistics (NCHS) Survey and 1979-1980 National Institute of Dental Research (NIDR) Survey.

When the 1979-1980 National Institute of Dental Research (NIDR) Survey is compared with an earlier similar survey by the National Center for Health Statistics (NCHS), the prevalence of dental decay among school-age children appears to have been significantly reduced since 1973. The availability of fluorides from a number of sources, including community water fluoridation, has contributed to the decline in dental caries.

FLUORIDATION - DMFT* status for U.S. and American Indian/Alaskan Native (AI/AN) children, 1979-1980 and 1983-1984

CHILDREN BY AGE
*Decayed, missing id ee to caries), and/or filled permanent teeth.
Source: 1979-1980 National Caries Prevalence Survey and 1983-1984 Indian Health Service Survey.

A survey conducted by the Indian Health Service (IHS) in 1983-1984, when compared with the National Institute of Dental Research (NIDR) 1979-1980 National Caries Prevalence Survey, showed that American Indian/Alaskan Native (AI/AN) children seen in IHS dental clinics have more tooth decay than the general population of U.S. schoolchildren. Although major differences in the sampling methods make direct comparisons of the IHS and NIDR data difficult, the higher incidence of tooth decay in $\mathrm{Al} / \mathrm{AN}$ children cannot be explained by these differences alone.

GENITAL HERPES

GENITAL HERPES - Consultations, office visits, and first office visits for genital herpes, United States, 1966-1983

"Includes any type of patient/physician interaction, such as telephone calls, house calls, and office visits.

Genital herpes infections remain a major public health problem. Data on genital herpes compiled by the National Disease and Therapeutic Index, a survey of private, office-based physicians in the United States, reflect a 16 -fold increase, from 26,000 to 423,000 , in the number of consultations for genital herpes in the period 1966-1983. This observation supports the concept that an epidemic of genital herpes infections is occurring in the United States.

HOMICIDE - Age-adjusted homicide rates, by race and sex, United States, 1940-1982

Homicide in the United States has traditionally had a disproportionate impact on young people, males, and minorities. Of the 22,358 homicides reported to the National Center for Health Statistics in 1982 as "homicide and injury purposely inflicted by another person" and "legal intervention," black and other minority males accounted for 36.0%; white males, for 41.4%; white females, for 14.2%; and black and other minority females, for 8.3%. Race- and sex-specific homicide rates were highest for black and other minority males at 50.2 homicides/100,000 population, followed by black and other minority females at 10.6/100,000, white males at $9.6 / 100,000$, and white females at $3.1 / 100,000$. Age-specific homicide rates peaked in the 20- to 29-year age group in each race/sex category. The risk of victimization was highest for young black males, for whom rates exceeded 40/100,000 in each age group between ages 15 and 59 years.

During the period 1940-1982, black and other minority males consistently had the highest age-adjusted homicide rates, followed by black and other minority females, white males, and white females. The most striking pattern in these long-term trends was the upturn in ageadjusted homicide rates for black and other minority males beginning about 1962. After 1962, age-adjusted rates continued to increase for black and other minority males, peaking at 82.4/100,000 in 1972, and then declined in an uneven fashion to 52.2/100,000 in 1982.

HOMICIDE

HOMICIDE - Homicide rates for black males 15-24 years of age, by age group and year, United States, 1970-1982

Because of the extraordinarily high risk of homicide victimization faced by young black males in the United States, the Department of Health and Human Services, in 1978, adopted an objective for reducing homicide rates among black males ages 15-24 to below 60/100,000 by 1990. Homicide rates in this group have declined in the past 12 years, dropping from 102.5/100,000 in 1970 to $72.0 / 100,000$ in 1982.

These patterns in the risk of homicide victimization confirm what has traditionally been the case-young black males face an unacceptably high risk of homicide victimization. In fact, mortality data for 1980 show that homicide is the leading cause of death for black males between the ages of 15 and 34. The economic and social implications of these data indicate that this problem be given high priority on the public heaith agenda.

HOMICIDE - Number of homicides and homicide rates (per 100,000 population), by race, sex, and age group, United States, 1982

Age group	White						Black and other					
	Total		Male		Female		Total		Male		Female	
	No.	Rate										
< 10	452	0.0	245	0.0	207	0.0	334	0.0	189	0.0	145	0.0
10-14	150	1.1	68	1.7	82	0.5	87	0.9	58	1.6	29	0.2
15-19	1.044	9.6	766	15.5	278	3.4	893	4.6	722	7.2	177	1.9
20-24	2,013	16.0	1,537	26.4	476	5.4	1.745	10.6	1.442	17.5	303	3.9
25-29	1.932	17.4	1.508	27.5	424	7.3	1,852	12.2	1,538	21.6	314	3.7
30-34	1,506	16.1	1.216	24.5	290	7.7	1,523	10.9	1,276	18.2	247	4.6
35-39	1.208	16.0	937	23.1	271	8.9	941	9.8	781	16.1	160	4.4
40-44	962	16.8	742	24.3	220	9.5	618	7.7	500	12.6	118	3.5
45-49	678	17.7	540	25.2	138	10.5	524	6.7	433	10.5	91	3.5
50-54	653	18.1	499	26.3	154	10.4	430	7.6	364	13.0	66	3.2
55-59	498	18.5	377	27.7	121	10.3	301	7.2	253	12.0	48	3.4
60-64	392	17.7	282	28.2	110	8.7	237	5.8	191	9.8	46	2.7
65-69	286	17.7	180	29.9	106	7.8	173	7.1	138	13.5	35	2.4
70-74	223	19.7	135	37.4	88	6.9	112	6.2	80	11.7	32	2.2
75-79	169	22.2	94	47.2	75	6.7	72	5.8	47	11.5	25	2.1
80-84	112	20.8	48	50.8	64	5.2	33	8.9	20	18.8	13	3.0
$85+$	115	18.6	54	53.9	61	3.9	26	6.6	12	13.6	14	3.1
Age not stated	46	-	32	-	14	-	18	-	11	-	7	-
Total	12,439	13.2	9,260	20.7	3,179	6.1	9,919	6.2	8,055	10.3	1,864	2.5

INFLUENZA

INFLUENZA - Highest level of influenza morbidity reported, by state, United States, November 1984-June 1985

Influenza type A (H3N2) viruses were isolated in every state during the 1984-1985 season and were associated with the highest ratio of pneumonia and influenza deaths (as a percentage of total deaths) since 1976. Low levels of influenza B activity occurred late in the season, and influenza A (H1N1) virus was reported rarely.

INFLUENZA - Isolation of influenza viruses reported to CDC by collaborating civilian and military laboratories, United States, 1976-1985

Approximately 2,100 isolates were reported by collaborating laboratories. This number was close to the total for the 1983-1984 season and above the average of about 1,500 isolates for the preceding five seasons.

INFLUENZA

INFLUENZA - Indicators of influenza activity, by week, United States, 1984-1985 season

LABORATORY DIAGNOSIS OF INFLUENZA§ BY VIRUS ISOLATIONS

-Reported to CDC by approximately 125 physician members of the American Academy of Family Physicians. A case was defined as a patient with fever 37.8 C (100 F) or greater and at least cough or sore throat.
${ }^{\dagger}$ Reported to CDC from 121 cities in the United States. Pneumonia and influenza deaths include all deaths where pneumonia is listed as a primary or underlying cause or where influenza is listed on the death certificate.
$\S_{\text {Reported to }}$ CDC by WHO Collaborating Laboratories (including military sources).

OCCUPATIONAL HAZARDS - The 10 leading work-related diseases and injuries, United States

1. Occupational lung diseases
2. Musculoskeletal injuries
3. Occupational cancers (other than lung)
4. Severe occupational traumatic injuries
5. Cardiovascular diseases
6. Disorders of reproduction
7. Neurotoxic disorders
8. Noise-induced loss of hearing
9. Dermatologic conditions
10. Psychologic disorders

Based on an evaluation of current occupational problems in the United States, the National Institute for Occupational Safety and Health (NIOSH) has developed and published" a suggested list of the 10 leading work-related diseases and injuries. Three criteria were used to develop the list: the disease's or injury's frequency of occurrence, its severity in the individual case, and its amenability to preventive efforts. The list is suggested with three purposes: 1) to encourage deliberation and debate among professionals about the major problems in this field of public health, 2) to assist in setting national priorities for efforts to prevent health problems related to work, and 3) to convey to a diverse audience the concerns of the leadership of NIOSH and the focus of the Institute's activities. This tabulation serves as a guide for the NIOSH research program. Efforts are now under way to develop a comprehensive control strategy for each problem on the list and to study the need for establishing or modifying standards. The list is intended to be dynamic; it will be reviewed periodically for necessary updating as knowledge increases and as conditions change and are brought under better control.

[^13]
OCCUPATIONAL HAZARDS

OCCUPATIONAL HAZARDS - Occupational lung diseases

The U.S. Public Health Service (PHS) objective for occupational lung diseases in the year 1990 states that among workers newly exposed after 1985, there should be virtually no new cases of four preventable occupational diseases-asbestosis, byssinosis, silicosis, and coal workers' pneumoconiosis. Because no national reporting system currently exists for these diseases, mortality data are used to monitor trends for some occupational lung diseases. Important deficiencies in these data, however, detract from their value as a surveillance tool. Mortality data may underestimate the problem because lung diseases may not be listed on the death certificate or may not, if listed, be selected as the underlying cause of death. In addition, mortality data do not explain the course of disease development or the exposures that lead to disease development. Thus, present trends may not accurately reflect future patterns of morbidity and mortality from these diseases.

Because information on the incidence and course of disease is essential for mounting an effective prevention/control program, surveillance methods must be developed to detect environmental hazards that lead to occupational lung disease and to track the incidence of these diseases. NIOSH is collaborating with the Conference of State and Territorial Epidemiologists to establish a reporting system for occupational diseases, and initial efforts have involved occupational lung diseases. In addition, both the Surveillance Cooperative Agreements Between NIOSH and States (SCANS) and the NIOSH Cooperative Agreement Program for Capacity Building in Occupational Safety and Health are supporting pilot projects to evaluate several types of reporting mechanisms.

OCCUPATIONAL HAZARDS - Musculoskeletal injuries

Musculoskeletal disorders are currently the leading cause of lost workdays among American workers. The PHS has stated that by the year 1990, lost workdays due to injuries should be reduced to 55/100 workers annually. At the present time, comprehensive and reliable surveillance data are lacking in this area.

The principal musculoskeletal injuries result from cumulative trauma associated with repetitive work activities - such as assembly-line production-and from acute trauma associated with a wide variety of tasks. A work activity is termed a traumatogen if it presents excess biomechanical stress to muscles, tendons, ligaments, nerves, joints, and supporting vasculature. Common traumatogens include bending, twisting, reaching, gripping, pinching, kneeling, squatting, and lifting.

NIOSH is studying several aspects of musculoskeletal disorders and has prepared a Manual for Detecting Cumulative Trauma Disorders of the Upper Extremity. This manual identifies the elements of job tasks that are implicated in musculoskeletal disorders of the wrist, hand, arm, and shoulder, and describes methods for preventing these disorders.

OCCUPATIONAL HAZARDS - Selected occupational cancers

ICD-9	Condition	Industry/occupation	Agent
155	Hemangiosarcoma of the liver	Vinyl chloride polymerization Industry vintners	Vinyl chloride monomer Arsenical pesticides
160.0	Malignant neoplasm of nasal cavities	Woodworkers, cabinet/furniture makers Boot and shoe producers Radium chemists, processors, dial painters Nickel smelting and refining	Hardwood dusts Unknown Radium Nickel
161	Malignant neoplasm of larynx	Asbestos industries and utilizers	Asbestos
$\begin{aligned} & 158, \\ & 163 \end{aligned}$	Mesothelioma (peritoneum) (pleura)	Asbestos industries and utilizers	Asbestos
170	Malignant neoplasm of bone	Radium chemists, processors, dial painters	Radium
187.7	Malignant neoplasm of scrotum	Automatic lathe operators, metalworkers	Mineral/cutting oils
		Coke oven workers, petroleum refiners, tar distillers	Soots and tars, tar distillates
188	Malignant neoplasm of bladder	Rubber and dye workers	Benzidine, alpha and beta naphthylamine, auramine, magenta, 4-aminobiphenyl, 4-nitrophenyl
189	Malignant neoplasm of kidney; other, and unspecified urinary organs	Coke oven workers	Coke oven emissions
204	Lymphoid leukemia, acute	Rubber industry Radiologists	Unknown lonizing radiation
205	Myeloid leukemia, acute	Occupations with exposure to benzene Radiologists	Benzene lonizing radiation
207.0	Erythroleukemia	Occupations with exposure to benzene	Benzene

Exposure to certain chemicals has been shown to produce cancer in humans; many of these chemicals are found in the workplace. The increased volume and diversity of synthetic chemicals manufactured since World War II have raised concern about possible increased rates of occupational cancer. As exposed cohorts of workers age, this issue may become more clear. The PHS has stated that by the year 1990 generic standards and other forms of technology transfer should be established, when possible, for standardized employer attention to such major common problems as carcinogenic hazards and medical monitoring requirements.

NIOSH conducts investigations to determine whether work within certain occupational groups or specific occupational exposures are associated with an increased risk of acquiring cancer. The ultimate objective is to determine whether specific industrial chemicals cause cancer.

OCCUPATIONAL HAZARDS

OCCUPATIONAL HAZARDS - Severe occupational traumatic injuries

In 1981, about one of every 12 workers in the private sector was involved in an occupational injury requiring treatment beyond first aid. The National Safety Council estimates that 2.1 million workers experienced disabling injuries in 1981 and that 70,000 of them were permanently impaired. In all, the toll on human and economic resources is enormous; the estimated total cost for workplace injuries in 1981 reached $\$ 32.5$ billion.

The PHS has stated that by the year 1990 the rate of work-related injuries should be reduced to 8.3 cases $/ 100$ full-time workers. Although comprehensive and reliable surveillance data are currently lacking in this area, data from the National Electronic Injury Surveillance System (NEISS), which tabulates occupational injuries treated at 66 representative U.S. hospital emergency rooms, show a considerable rise in such injuries since 1981.

Severe occupational traumatic injuries include amputations, fractures, lacerations, eye loss, burns, and fatalities. NIOSH researchers are investigating the causes and possible prevention for such problems as traumatic injury hazards associated with machines, high-risk occupations and activities in the construction industry, and exposure to hazardous energy sources during maintenance and servicing tasks.

OCCUPATIONAL HAZARDS - Neurotoxic disorders

As many as 150 major industrial chemicals are considered neurotoxic at levels at or below the level needed to produce other adverse health effects. Exposure to these chemicals results in mild-to-severe neurotoxic effects, including changes in motor, sensory, and cognitive function. From 1972 to 1974, NIOSH conducted the National Occupational Hazard Survey (NOHS) to identify a variety of potential hazards in the workplace. One hazard identified was industrial exposure to lead, and data from NOHS have been used to pinpoint sites for targeting resources to combat the problem. The county map generated from NOHS data shows approximate sites of greatest workplace exposures to lead. Although lead poisoning is a wellknown neurotoxic disorder, lead is still used in industries widely distributed throughout the United States. In 1976-1980, 92\% of adult males in the United States with blood lead levels over $30 \mu \mathrm{~g} / \mathrm{dl}$ worked in jobs that had been judged in 1972 as having potential for occupational exposure to lead. Blood lead levels of $30 \mu \mathrm{~g} / \mathrm{dl}$ are currently accepted as indicating cause for concern.

OCCUPATIONAL HAZARDS - Distribution of facilities potentially using inorganic leads," by county, United States, 1972-1974

*Based on National Occupational Hazard Survey (NOHS) observation of inorganic leads and trade-name resolution.

Selection criteria: industries in which 1% or more of the workforce is potentially exposed (NOHS)

The PHS has stated that by 1990 occupational heavy metal poisoning (lead, arsenic, and zinc) should be virtually eliminated. NIOSH is conducting research to facilitate a strategy for detecting neurotoxic chemicals in the workplace and for evaluating the impact on the nervous system of short-term and long-term exposures.

OCCUPATIONAL HAZARDS

OCCUPATIONAL HAZARDS - Noise-induced loss of hearing

The Occupational Safety and Health Administration estimates that 9.4 million U.S. workers (7.9 million active and 1.5 million retired) are or have been in jobs where noise-exposure levels are 80 decibels (dBA) or higher. Increased risk of hearing loss due to occupational noise generally begins at this level. As a result, about 1.6 million workers (17%) may have at least mild hearing loss resulting from this occupational noise exposure, 1.1 million (11%) may have measurable hearing loss, and nearly 0.5 million may have moderate-to-severe loss. These estimates generally agree with the findings of surveys by NIOSH, which indicate that one of four persons 55 years of age or older exposed to an average of 90 dBA over a working lifetime has experienced a significant loss of hearing.

Occupational noise-induced hearing loss is preventable. The PHS has stated that by 1990 the prevalence of occupational noise-induced hearing loss should be reduced by 415,000 cases.

NIOSH has developed a program with three goals for reducing noise-induced hearing loss: 1) to establish baseline data on occupational noise-induced hearing loss by monitoring the history of hearing-loss claims, 2) to determine the relative hazards from different types of noise and to define the interactions between noise and other hazards in the workplace, and 3) to develop initiatives in environmental controls and behavioral methods that foster hearing conservation.

OCCUPATIONAL HAZARDS - Typical A-weighted noise levels in decibels*

[^14]
OCCUPATIONAL HAZARDS

OCCUPATIONAL HAZARDS - Dermatologic conditions

Dermatologic conditions of occupational origin were estimated to account for more than 40\% of all reported occupational illnesses each year from 1972 through 1981. As much as 1% of the workforce may be affected by occupational skin disease at any given time. Although comprehensive and reliable surveillance data are lacking, the estimated cost in lost productivity from all occupational skin disease is nearly $\$ 10$ million annually.

Efforts are under way to create an increased awareness of the toxicity of substances found in the workplace and to improve the protection afforded to workers. NIOSH is particularly concerned with the degree of protection afforded by commercially available chemical protective clothing materials and products. The basic thrust of the NIOSH chemical protective clothing program is to provide users with information on which to base decisions for selecting and using such clothing.

OCCUPATIONAL HAZARDS - Investigating problems with respirators

The Federal Mine Safety and Health Amendments Act of 1977 authorizes a program for approving respirators. It is carried out jointly by NIOSH and the Mine Safety and Health Administration (MSHA). This program is conducted in accordance with requirements published in the Code of Federal Regulations, Title 30, Part 11 (30 CFR 11). The Occupational Safety and Health Administration and several other federal regulatory agencies require that respirators used in industry be approved by NIOSH and MSHA.

NIOSH receives reports of problems identified in approved respirators from respirator users and from investigations carried out by manufacturers. Such problems may be due to faulty design and/or function. From July 1, 1983, through June 30, 1984, NIOSH received 35 reports of problems with respirators. Investigations revealed that 21 (60\%) of these involved self-contained breathing devices; nine showed deficiencies that were classified as lifethreatening or likely to cause illness or injury.

When serious problems are found, i.e., deficiencies that could affect health and safety, users are alerted immediately. If a manufacturer is unable to identify and notify the purchasers of defective respirators, NIOSH will issue a general warning to users of respirators and to other interested persons.

PEDIATRIC NUTRITION - Percentage of children screened with low or high anthropometric nutrition indices, by age and ethnic group, 31 states, United States, 1984

Age/ethnic group	Number examined *	Height-for-age	Weight-for height	
		< 5th percentile	<5th percentile	> 95th percentile
0-11 Months				
White	134,866	5.9	4.0	6.0
Black	68,502	7.8	6.0	8.8
Hispanic	30.595	6.2	5.7	7.0
American Indian	5,853	6.4	3.8	10.3
Asiant	3,310	8.1	3.6	8.5
12-23 Months				
White	38,260	11.6	4.4	9.6
Black	26,087	10.6	4.4	11.3
Hispanic	5,435	13.7	4.4	12.4
American Indian	1,259	11.3	3.5	13.7
Asiant	+973	21.9	8.7	7.4
2-5 Years 4.1				
White	82.597	10.5		
Black	53,675	6.4	3.8 3.1	5.3 7.5
Hispanic	10,014	14.2	3.1	8.5
American Indian	2,455	10.5	1.8	8.2 3.9
Asiant	1,791	28.9	7.1	3.9
6-9 Years 21.10 .4				
White	10,108 7.836	6.4 2.9	3.1	5.6
Black Hispanic	7.836 417	2.9 11.5	3.6 2.6	12.2
Ampanic	417 96	11.5	§	§
Asiant	60	\S	8	9

- Total does not equal 610,439 because of unknown or missing data for some variables and the exclusion of states with date errors.
${ }_{\S}^{\dagger}$ Data for Asians include data from an unknown number of recent Southeast Asian refugees.
$\S_{\text {Insufficient data. }}$

The Pediatric Nutrition Surveillance System, coordinated by CDC, uses nutrition-related data collected by local health departments as part of the routine delivery of child health services. During 1984, initial visit (screening) data were submitted for 610,439 children ranging in age from birth through 9 years. These data represent the results of examination of new patients at 2,464 clinics in 31 states, the District of Columbia, and Puerto Rico. The data include records received by the Division of Nutrition through the end of August 1985. Of the total records submitted, data from several areas have been excluded because of problems with the recording of dates.

The data consist primarily of identifying and demographic information, height (length or stature), weight, birth weight, and hemoglobin and/or hematocrit determinations. Anthropometric data on height, weight, and age are converted to percentiles of height-for-age and weight-for-height, using the National Center for Health Statistics reference population." Values that fall below the 5 th percentile of height-for-age or weight-for-height and above the 95 th percentile of weight-for-height are reported as potentially abnormal values. Results based on these cutoff points are shown above.

[^15]
PEDIATRIC NUTRITION

Several levels of hematocrit and/or hemoglobin are currently being used to define anemia in the United States. Most clinics providing data to the Pediatric Nutrition Surveillance System use cutoff levels that are adjusted to reflect the increases in hematocrit and hemoglobin that occur with age and altitude. For hematocrits at sea level, at present these values are 31% for children 6-23 months old, 34% for 2- to 5 -year-olds, and 37% for 6- to 9 -year-olds. For hemoglobins at sea level, the values are $10.0 \mathrm{~g} / 100 \mathrm{ml}, 11.0 \mathrm{~g} / 100 \mathrm{ml}$, and $12.0 \mathrm{~g} / 100 \mathrm{ml}$ for the respective age groups. The top table on the next pages lists, by age and ethnic group, three alternative cutoff points for hematocrit.

Similarly, data on the prevalence of hemoglobin values below four selected cutoff points are presented in the bottom table on the next page. Preliminary age- and sex-specific percentile curves were developed at CDC with hematologic data from the 1971-1974 National Health and Nutrition Examination Survey (NHANES I)." The prevalence of hematocrit and hemoglobin values below the 5 th percentile curve are included in the tables to provide an additional reference point for the evaluation of hematologic data.

[^16]PEDIATRIC NUTRITION - Percentage of children screened with hematocrit values below selected cutoff points, by age and ethnic group, United States, 1984

Age/ethnic group	Number examined ${ }^{-}$	< 5th percentile	Hematocrit (\%)		
			< 31	< 34	<37
6-11 Months <					
White	21,278	7.0	5.7	32.3	74.9
Black	13,883	6.9	6.2	33.2	76.5
Hispanic American Indian	4,365	8.0	6.1	34.8	73.1
Asiant ${ }^{\text {American Indian }}$	967	7.9	3.7	25.5	64.0
	467	8.1	6.0	27.0	68.3
12-23 Months					
White					
Black	31,960	6.3	3.8	23.0	65.8
Hispanic	34,202 4.516	8.7	5.5 5.4	28.7 25.0	73.0
American Indian	4,153 1,15	5.8	5.4 2.8	18.4	63.6 574
Asiant	660	6.2	3.8	22.7	58.0
2-5 Years					
White	66,485	7.6	1.7	15.9	55.6
Black	49,985	11.6	3.3	22.4	66.7
Hispanic	8,324	10.8	2.5	20.3	56.3
American Indian	2,234	6.8	1.3	11.5	48.3
Asiant	1,222	8.6	2.5	15.2	48.4
6.9 Years					
White	10,355	3.8	-	1.8	21.3
Black	8,277	6.5	-	3.0	30.3
Hispanic	366	3.6	-	1.1	14.8
American Indian	103	2.9	-	1.0	15.5
Asiant	12	§	§	§	§

"Total does not equal $\mathbf{6 1 0 , 4 3 9}$ because of unknown or missing data for some variables and the exclusion of states with date errors.
\oint Data for Asians include data from an unknown number of recent Southeast Asian refugees.
Insufficient data.

PEDIATRIC NUTRITION - Percentage of children examined with hemoglobin values below selected cutoff points, by age and ethnic group, United States, 1984

Age/ethnic group	Number examined*	< 5th percentile	Hemoglobin (g/100 ml)			
			< 10.0	< 11.0	< 11.5	< 12.0
6-11 Months						
White	3,996	2.7	5.0	25.7 31.2	43.0 53.5	67.9
Black	2,004	2.6	5.9 7.3	32.5	49.1	63.2
Hispanic	2,766	3.8	7.3 §	32.5 \S	\%	§
American Indian	54	3.1	6.7	31.7	47.8	62.1
	224					
12-23 Months 30.7						
White	6,541	3.7	4.6	23.4 31.7	37.8 54.3	68.0
Black	2,678	5.3	6.6 8.4	31.4	47.1	58.9
Hispanic	1,190	6.8	8.4	§	§	§
American Indian	+81	$5{ }^{6}$	7.5	30.6	45.5	61.3
Asiant	385	5.7				
2-5 Years 324.9						
White	13,275	5.9	1.2 3.1	13.1 25.1	44.2	58.3
Black	4,504	13.4	3.7	22.6	36.2	48.7
Hispanic	2,076	11.9 2.8	3.7 1.7	22.6 3.9	10.0	17.2
American Indian	180	2.8 9.4	2.4	18.9	31.2	44.9
Asiant	577	9.4	2.4	18.9		
6-9 Years 60.917 .4						
White	115	10.4	-	3.2	9.6	21.3
Black	249	12.9	§	§	§	§
Hispanic	12	§	§	-	§	§
Asiant	$\overline{39}$	§	§	§	\S	\bigcirc

[^17]PELVIC INFLAMMATORY DISEASE (PID) - Rates of hospitalizations for PID,* by age, United States, 1979-1983

-Source: Hospital Discharge Survey. Conducted by the National Center for Health Statistics. Rates are per 1,000 women ages $15-44$ years, hospitalized for PID, in non-Federal, short-stay hospitals, United States, 1979-1983.

Pelvic inflammatory disease (PID) is the most common serious complication of gonorrhea and is considered a major public health problem. It is estimated that about one million cases of PID (from all causes, including gonorrhea and chlamydial infection) occur each year in the United States, and about 25% of the patients require hospitalization. Recurrences of PID are common, and all women who have had PID are at increased risk for infertility and ectopic pregnancy.

Rates of hospitalizations for PID in the United States are, in general, inversely related to age. Data from the Hospital Discharge Survey conducted by the National Center for Health Statistics from 1979 to 1983 revealed that women 20-24 years old had twice the rate of hospitalizations as did women ages 40-44. The inclusion of all women rather than sexually active women in the denominator of these rates underestimates the risk for women 15-19 years old. If an estimated 50% of these teenagers are sexually active, then women 15-19 years old may have the highest age-specific rates.

PELVIC INFLAMMATORY DISEASE (PID) - Rates (per 1,000 women ages $15-44$ years) of hospitalization, 1979-1983

Variables	Rate
Race	
White	4.5
All others	10.2
Marital status	5.5
Single	4.9
Married	7.8
Divorced	8.9
Separated	
Geographic region	4.2
Northeast	5.6
North central	6.7
South	4.3
West	5.4
Total PID	

Source: National Center for Health Statistics; Hospital Discharge Survey.

Women of minority races had 2.3 times the risk of white women for being hospitalized for PID. This disparity may reflect differences in sexual practices, access to medical care, microbiologic factors, or a combination of these. Women who were divorced or separated had the highest rates of hospitalization. Compared with married or single women, divorced or separated women were about 60% more likely to have been hospitalized. Differences in rates were also found for women in different geographic regions, with women in the South having the highest and those in the Northeast the lowest.

REFUGEES - Arrivals to the United States, October 1, 1975 - September 30, 1984*

Area	Total	1984	1983	1982	1981	1980	1979	1978	1977	1976
Asia	713,923	51,960	39,408	73.522	131,139	163.799	76.521	20.574	7.000	15.000
Soviet Union	103.757	715	1,409	2,756	13.444	28.444	24.449	10.688	8,191	7.450
Eastern Europe	55,973	10,285	12,083	10.780	6.704	5.025	3.393	2.245	1.755	1.756
Latin America	29.109	. 160	668	602	2.017	6.662	7.000	3.000	3.000	3.000
Near East	23.140	5.246	5.465	6.369	3.829	2.231	-	-	-	-
Africa	11.795	2.747	2,648	3.326	2.119	955	-	-	-	-
Total	937,697	71.113	61,681	97,355	159,252	207.116	111.363	36,507	19,946	27,206

-All years cited are fiscal years, running from October 1 to September 30 of the following year.
U.S. refugee resettlement ceilings for fiscal year 1984 were 50,000 for Indochinese (Asia) and 22,000 for non-Indochinese (all others). During this period about 52,000 Indochinese and 19,000 non-Indochinese refugees resettled in the United States. The ceilings for fiscal year 1985 are 50,000 for Indochinese and 20,000 for non-Indochinese.

REFUGEES - Number of polio vaccine doses given to Indochinese refugees arriving in the United States with immunization records, by age at arrival, fiscal year 1984*

Arrival age (years)	Polio vaccine doses given								
	1		2				None		Total
	No.	(\%)	No.	(\%)	No.	(\%)	No.	(\%)	
<1	292	(67.3)	119	(27.4)	3	(0.7)	20	(4.6)	434
1-4	2,227	(39.2)	2,281	(40.2)	1.145	(20.2)	21	(0.4)	5,674
5-9	1,602	(30.2)	2,684	(50.6)	990	(18.7)	25	(0.5)	5,301
10-14	1,769	(25.9)	3,869	(56.7)	1.139	(16.7)	50	(0.7)	6,827
15-19	2,314	(26.8)	4,538	(52.5)	1,522	(17.6)	271	(3.1)	8,645
$20+$	387	(1.6)	505	(2.1)	454	(1.9)	22,782	(94.4)	24,128
Unknown	1	(1.7)	2	(3.4)	1	(1.7)	55	(93.2)	59
Total	8,592	(16.8)	13,998	(27.4)	5,254	(10.3)	23,224	(45.5)	51.068

- Trivalent oral polio vaccine is not given to pregnant females or adults over 20 years of age. The majority of refugees receive fewer than three doses because they are resettled out of the camps before the third dose in the series can be administered.

REFUGEES - Measles-mumps-rubella (MMR) doses given to Indochinese refugees arriving in the United States with immunization records, by age at arrival, fiscal year 1984*

Arrival age (years)	Given MMR	(\%)	Not given MMR	(\%)	Total
<1	5	(1.2)	429	(98.8)	434
1-4	4,633	(81.7)	1,041	(18.3)	5,674
5-9	5,226	(98.6)	75	(1.4)	5,301
10-14	6,590	(96.5)	237	(3.5)	6,827
15-19	5,648	(65.3)	2,997	(34.7)	8,645
$20+$	1,554	(6.4)	22,574	(93.6)	24,128
Unknown	11	(18.6)	48	(81.4)	59
Total	23,667	(46.3)	27,401	(53.7)	51,068

*MMR was not recommended for females over age 13, males over age 20, or children under 1 year of age.

REFUGEES

REFUGEES - Results of initial evaluation in the United States of Indochinese refugees classified overseas as having Class A lactive) and Class B (not active) tuberculosis (TB), fiscal year 1984

REYE SYNDROME - Cases of Reye syndrome, by month of hospitalization, United States, December 1976-November 1984

The number of Reye syndrome cases (204) reported in 1984 was among the lowest of the annual totals reported through the National Reye Syndrome Surveillance System since continuous surveillance was initiated in December 1976. The reported incidence of Reye syndrome in previous years has reflected, at least in part, the intensity and/or type of influenza activity. In 1984, influenza activity was much greater than in the two previous years, with widespread school outbreaks of both influenza $A(H 3 N 2)$ and influenza B strains that have previously been associated with nationwide outbreaks of Reye syndrome. The decline in the reported incidence of Reye syndrome in 1984 reflects a decrease in the number of cases in children under 10 years of age; the number of cases in older persons increased slightly. The decreased incidence of Reye syndrome for children under 10 was apparent in cases with both a varicella and a respiratory antecedent illness.

SUICIDE

SUICIDE-Age-adjusted suicide rates, by race and sex, United States, 1940-1982

Suicide remains a serious public health problem in the United States. According to the National Center for Health Statistics, 28,242 persons took their own lives in 1982, representing one suicide every 20 minutes. In the period 1940-1982, white males had the highest suicide rates compared with rates for males of black and other races and with rates for females of all races. Age-adjusted suicide rates (suicides per 100,000 population) for 1982 were 19.4 for white males, 10.8 for black and other males, 5.8 for white females, and 2.6 for black and other females. In 1982, white males accounted for 70.7% of all suicide deaths; white females, 21.9%; black and other males, 5.9%; and black and other females, 1.6%.

From 1950 to 1980 , age-specific suicide rates for males increased for the youngest age groups but decreased for the oldest age groups. For females the youngest and oldest age groups continued to have the lowest suicide rates, and the mid-life group had the highest. However, between 1950 and 1980, rates for younger women increased, and rates for older women decreased.

SUICIDE

SUICIDE-Rates for all persons $\mathbf{1 5 - 2 4}$ years of age, by age group, United States, 1970-1982

In the United States suicide has changed from a problem that primarily affects older persons to one that primarily takes young lives. In the period 1970-1982, suicide rates for all persons 15-24 years of age increased 37.5%, with most of the increase due to the rise in the suicide rate for white males. Even though older white males had the highest suicide rates, in absolute numbers most suicides occurred among young persons; for white males, 49.2% of all suicides occurred among persons less than 40 years old. Because of the increase in the suicide rate among youth, the Public Health Service has established a specific health objective focusing on the problem of youth suicide. The federal objective states that "by 1990 the rate of suicide among people 15 to 24 years of age should be below 11 per 100,000 (compared with 12.4 per 100,000 in 1978)."

This information is based on published and unpublished data compiled by the National Center for Health Statistics from death certificates using the cause of death category "suicide and self-inflicted injuries." These suicide statistics probably significantly underestimate the true incidence of suicide because many suicides are reported as accidents, natural causes, or deaths due to undetermined causes.

SUICIDE - Number of suicides and suicide rates (per 100,000 population), by race, sex, and age group, United States, 1982

Age group	White						Black and other					
	Total		Male		Female		Total		Male		Female	
	No.	Rate										
< 10	2	0.0	1	0.0	1	0.0	0	0.0	0	0.0	0	0.0
10-14	169	1.1	133	1.7	36	0.5	29	0.9	26	1.6	3	0.2
15-19	1,573	9.6	1,297	15.5	276	3.4	157	4.6	125	7.2	32	1.9
20-24	2,927	16.0	2,440	26.4	487	5.4	368	10.6	299	17.5	69	3.9
25-29	3.060	17.4	2.426	27.5	634	7.3	384	12.2	323	21.6	61	3.7
30-34	2,571	16.1	1,956	24.5	615	7.7	301	10.9	234	18.2	67	4.6
35-39	2,170	16.0	1,562	23.1	608	8.9	203	9.8	154	16.1	49	4.4
40-44	1,812	16.8	1,293	24.3	519	9.5	130	7.7	98	12.6	32	3.5
45-49	1.699	17.7	1.187	25.2	512	10.5	98	6.7	70	10.5	28	3.5
50-54	1.811	18.1	1.279	26.3	532	10.4	102	7.6	78	13.0	24	3.2
55-59	1.901	18.5	1.348	27.7	553	10.3	92	7.2	68	12.0	24	3.4
60-64	1,685	17.7	1,245	28.2	440	8.7	63	5.8	47	9.8	16	2.7
65-69	1,427	17.7	1,078	29.9	349	7.8	63	7.1	51	13.5	12	2.4
70-74	1,278	19.7	1.018	37.4	260	6.9	44	6.2	35	11.7	9	2.2
75-79	1,028	22.2	837	47.2	191	6.7	28	5.8	22	11.5	6	2.1
80-84	598	20.8	499	50.8	99	5.2	24	8.9	19	18.8	5	3.0
$85+$	416	18.6	354	53.9	62	3.9	13	6.6	9	13.6	4	3.1
Age not stated	14	-	12	-	2	-	2	-	2	-	0	-
Total	26,141	13.2	19,965	20.7	6,176	6.1	2,101	6.2	1,660	10.3	441	2.5

YEARS OF POTENTIAL LIFE LOST

YEARS OF POTENTIAL LIFE LOST (YPLL) - YPLL in millions, from age 1 year to the 65th birthday, by underlying cause of death, United States, 1982-1983

*Chronic obstructive pulmonary disease
NOTE: See table for details of calculation and specific International Classification of Diseases, Ninth Revision codes for underlying cause of death.

Total years of potential life lost (YPLL), a measure of premature mortality from all causes over the span from age 1 to 65 years, decreased 2.9\% from 1982 to 1983 (based on age-specific death rates from the National Center for Health Statistics). The rate of YPLL (per 1,000 persons) for that age range decreased 3.6%.

The relative rankings of the four leading categories of underlying cause of death did not change from 1982 to 1983. Unintentional injuries (accidents) continue to lead the list, followed by malignant neoplasms, diseases of the heart, and suicides/homicides (intentional injuries). The rate of YPLL for accidents, however, fell by 7.4%, with motor-vehicle accidents decreasing 8.2% and other accidents, 6.0%.

YEARS OF POTENTIAL LIFE LOST (YPLL)- Percentage change* in rates of YPLL, United States, 1982-1983

[^18]The largest proportional decrease in the rate of YPLL was for cerebrovascular diseases, down 12.9\%, with the rates for pneumonia and influenza and suicides/homicides also declining. Increases in the rate of YPLL occurred for diabetes mellitus, up 7.2%, and chronic obstructive pulmonary disease (COPD), up 6.5\%. Although the rate of YPLL for diabetes has tended to decrease over the past several years (down 3.4% from 1980), the rate for COPD has increased 8.9\% since 1980.

YEARS OF POTENTIAL LIFE LOST

YEARS OF POTENTIAL LIFE LOST (YPLL) - YPLL, deaths, and death rates, by cause of death, and estimated number of physician contacts, by principal diagnosis, United States

Cause of morbidity or mortality (Ninth Revision ICD, 1975)	Years of potential life lost before age 65 by persons dying in 1983°	Estimated mortality1984^{\dagger}		Estimated number of physician contacts1984^{\S}
		Number	Rate/100,000	
ALL CAUSES (TOTAL)	9,170,000	2,046,780	866.7	1,299,400,000
Accidents and adverse effects (E800-E949)	2,219,000	93,520	39.6	70,000,000
Malignant neoplasms (140-208)	1,808,000	453,660	192.1	20,300,000
Diseases of heart (390-398. 402, 404-429)	1,559,000	763,260	323.2	72,400,000
Suicides, homicides (E950-E978)	1,218,000	47,470	20.1	
Chronic liver disease and cirrhosis (571)	248,000	26,690	11.3	1,400,000
Cerebrovascular diseases (430-438)	226,000	154,680	65.5	9,100,000
Congenital anomalies (740-759)	134,000	12,990	5.5	4,300,000
Chronic obstructive pulmonary diseases and allied conditions (490-496)	123,000	70,140	29.7	20,500,000
Diabetes mellitus (250)	115,000	35,900	15.2	35,600,000
Pneumonia and influenza** $(480-487)$	106,000	58,800	24.9	14,500,000
Prenatal care* Infant mortality ${ }^{\text {. } \dagger \dagger}$		39,188	10.6 /1	$33,200,000$ ve births
- Years of potential life lost for persons between 1 year and 65 years old at the time of death are derived from the number of deaths in each age category as reported by the National Center for Health Statistics, Monthly Vital Statistics Report (MVSR), Vol. 32, No. 13. September 21, 1984, multiplied by the difference between 65 years and the age at the midpoint of each category. As a measure of mortality, "Years of potential life lost" underestimates the importance of diseases that contribute to death without being the underlying cause of death. ${ }^{\dagger}$ Deaths and death rates by cause are estimated by NCHS (MVSR. Vol. 34, No. 1, April 18, 1985, pp. 8-9), using the underlying cause of death from a 10% systematic sample of death certificates received in state vital statistics offices and population estimates from the Bureau of the Census. $\S_{\text {IMS }}$ America National Disease and Therapeutic Index (NDTI). Monthly Reports, Section III. This estimate comprises the number of office, hospital, and nursing home visits and telephone calls prompted by each medical condition based on a stratified random sample of office-based physicians $(2,100)$ who record all private patient contacts for two consecutive days each quarter. The accuracy of the estimates is unknown, and the number provided should be used only as a gross indicator of morbidity. ""Prenatal care" (NDTI) and "infant mortality" (MVSR Vol. 34, No. 1. April 18, 1985, p. 10) are included in the table because calculation of years of potential life lost does not reflect deaths of children under 1 year of age.				
- Infant deaths are estimate NCHS (MVSR Vol. 33, No. ${ }^{\dagger}{ }^{+}$The infant mortality rate	the infant mortal March 26, 1985). number of deaths	te multiplied by ring before 1	the number of live ar of age/1,000	hs in 1984 as repo rths.

APPENDIX

Appendix Morbidity Tables (1935-1984)

Table 1. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1975-1984 124
Table 2. NOTIFIABLE DISEASES - Summary of reported cases per 100,000 population, United States, 1975-1984 125
Table 3. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1965-1974 126
Table 4. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1955-1964 127
Table 5. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1945-1954 128
Table 6. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1935-1944 129
Appendix Mortality Tables (1974-1983)
Table 7. NOTIFIABLE DISEASES - Deaths from specified notifiable diseases, United States, 1974-1983 130
Table 8. NON-NOTIFIABLE CONDITIONS - Deaths from selected acute conditions and violence, United States, 1974-1983 131

TABLE 1. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1975-1984

- Not previously notifiable nationally
${ }_{\S}^{\dagger}$ Civilian cases only.
${ }^{\text {D }}$ Data for 1984 reflects change in categories for tabulating encephalitis reports. Cases for 1984 are recorded by date of report to state health departments. Data for previous years are from surveillance gecords reported by onset date.

982-1984 recorded by date of report to state health department. Data for all previous years are from surveillance records reported by onset date
\because Case data subsequent to 1974 are not comparable to prior years due to changes in reporting criteria which became effective in 1975

Note: Rates less than 0.01 after rounding are shown as 0.00
Population data from those states where diseases were not notifiable (NN) were excluded from rate calculation. Civilian resident population was used for chancroid, gonorrhea, granuloma inguinale, lymphogranuloma venereum, and syphilis.
${ }^{-}$Not previously notifiable nationally.
${ }^{\dagger}$ Per 1,000 live births.

TABLE 3. NOTIFIABLE DISEASES—Summary of reported cases, United States, 1965-1974

-Not previously notifiable nationally.

TABLE 4. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1955-1964 (Figures exclude Alaska 1955-1958 and Hawaii, 1955-1959.)

Disease	1964	1963	1962	1961	1960	1959	1958	1957	1956	1955
U.S. total resident population, July 1, estimate (in thousands)	191.141	188,483	185,771	182,992	179,979	176,513	173,320	170.371	167,306	164,308
Amebiasis	3,304	2,886	3,048	2.850	3.424	3.508	4,380	5.031	3,689	3,348
Anthrax	5	3	3,04	$14+$	3.23	12	4,38	5,036	3,688	3,348
Aseptic meningitis	2.177	1.844	2,654	5,162 ${ }^{\dagger}$	1.593	12	16	26	38	3
Botulism	23	47	10	14	12	20	6	28	17	16
Brucellosis (undulant fever)	411	407	409	636	751	892	924	983	1,300	1.444
Chancroid	1,247	1.220	1.344	1.438	1.680	1.537	1,595	1,637	2,135	2,649
Cholera	-	-	-	-	-	-	-	-	-	-
Dengue	NN	NN	NN	NN	NN	-	-	-	2	1
Diphtheria	293	314	444	617	918	934	918	1.211	1.568	1,984
Encephalitis, acute infectious	$2,002$	1.993	2.094	2,248	2,341	2.437	2.587	$2,135$	$2,624$	2,166
Gonorrhea	$300,666$	278.289	263.714	264.158	$258,933$	$240,254$	$232,386$	$214,496$	$224,346$	236.197
Granuloma inguinale	135	173	207	241	296	265	314	348	357	490
Hepatitis, infectious and serum	37.740	42.974	53.016	72,651	41.666	23.574	16,294	14.922	19.234	31.961
Leprosy	97	103	80	63	54	44	39	36	52	75
Leptospirosis	142	89	79	71	53	83	55	47	44	24
Lymphogranuloma venereum	732	586	590	787	835	604	434	448	500	762
Malaria	93	99	118	73	72	71	85	132	234	522
Measles (rubeola)	458,083	385,156	481.530	423.919	441.703	406,162	763,094	486,799	611,936	555.156
Meningococcal infections	2.826	2,470	2,150	2,232	2,259	2,180	2.581	2,691	2,735	3,455
Pertussis (whooping cough)	13,005	17,135	17,749	11,468	14,809	40.005	32.148	28,295	31.732	62.786
Plague	-	1	17,	3	2	4	32.188	1	+1	62,786
Poliomyelitis	122	449	910	1,312	3,190	8.425	5,787	5,485	15,140	28,985
Paralytic	106	396	762	988	2,525	6,289	3,697	2,499	7.911	13.850
	53	76	79	102	113	147	158	278	568	334
Rabies, human \S	1	1	2	3	2	7	5	5	10	4
Rabies, animal	4.780	3.929	3.732	3.599	3.567	4.177	4,787	4,542	5.681	5.799
Rheumatic fever, acute	7.491	7.561	7.977	10.470	9,022	8.285	6,889	6,427	6.562	
Salmonellosis, excluding typhoid fever	17,144	15,390	9,680	8.542	6,929	6,606	6,363	6,693	6.704	5.447
Shigellosis	12.984	13,009	12,443	12.571	12,487	12.888	${ }^{11.861}$	9.822	10.306	13,912
Smallpox										
Streptococcal sore throat and scarlet fever	402,334	342,161	315,809	338,410	315.173	334,715	264,097	226,973	176,392	147.502
Syphilis, primary and secondary	22,969	22,251	21,067	19,851	16.145	9,799	7.176	6.576	6.392	6.454
Total, all stages	114,325	124,137	126.245	124,658	122,538	120,824	113.884	123.758	130.201	122,392
Tetanus	289	325	322	379	368	445	445	447	468	462
	198 508	208	194	306 53	160	- 227	176	-178	262	264
Tuberculosis	50,874	54,042	53,315	53.726	55,494	57.535	63.534	67.149	69,895	77.368
Tularemia	342	327	328	365	390	459	587	601	522	584
Typhoid fever	501	566	608	814	816	859	1,043	1.231	1.700	1.704
Typhus fever, flea-borne (endemic, murine)	30	35	32	46	68	51	71	113	98	135
Typhus fever, tick-borne (Rocky Mountain spotted)										
Yellow fever										

[^19]TABLE 5. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1945-1954

- Data reported for fiscal years 1945-1946; calendar years 1947-1954
${ }_{5}^{\dagger}$ Data for 1953 and 1954 includes serum hepatitis.
${ }^{8}$ Registered deaths
"Data from Bureau of Animal Industry. U.S. Department of Agriculture, Agricultural Research Administration, 1945-1951
"-Includes newly reported active and inactive cases, 1945-1951; new active cases, 1952-1954.

TABLE 6. NOTIFIABLE DISEASES - Summary of reported cases, United States, 1935-1944

- Data reported for fiscal years
${ }^{\dagger}$ Registered deaths.
$\S_{\text {Data }}$ from Bureau of Animal Industry, U.S. Department of Agriculture, Agricultural Research Administration
Includes newly reported active and inactive cases.
- Includes cases of paratyphoid 1935-1941.

TABLE 7. NOTIFIABLE DISEASES - Deaths from specified notifiable diseases, United States, 1974-1983
(Numbers in ICD column refer to the category numbers listed in the Ninth Revision of the International Classification of Diseases, 1975.)

Cause of Death	ICD	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974
Amebiasis	006	21	7	16	22	19	14	28	36	35	25
Anthrax	022	-	-	-	-	-	-	-	-	-	-
Botulism, foodborne	005.1	7	4	3	5	2	5	6	3	3	6
Brucellosis	023	-	2	1	-	2	3	-	2		-
Chancroid	099.0	-	-	-	-	-	-	-	-	-	-
Cholera	001	-	-	3	1	-	-				-
Diphtheria	0032	-	1	-	1	1	4	5	7	5	5
Encephalitis, acute infectious*	062-064,049	169	166	164	188	172	185	206	253	386	276
Gonococcal infections	098	4	6	4	7	1	9	1	1	1	1
Granuloma inguinale	099.2	-	-	-	1	1	1	-	-	1	-
Hepatitis, viral, infectious (Hepatitis A)	070.0.070.1	82	83	93	112	129					
Hepatitis, viral, serum (Hepatitis B)	070.2,070.3	438 343	375 356	359	294	260	508	508	567	612	630
Hepatitis, viral, other and unsp.	070.4-070.9	343	356	410	403	364					
Leprosy.	030	3	3	2	-	3	4	1	1	2	2
Leptospirosis	100	5	4	5	2	4	5	8	12	7	5
Lymphogranuloma venereum	099.1	-	1	1	1	1	$\overline{5}$	$\overline{3}$	-	2	2
Malaria	084	3	2	7	-	3	5	3	4	4	4
Measles (rubeola)	055	4	2	2	11	6	11	15	12	20	20
Meningococcal infection	036	299	364	459	387	404	403	338	330	308	305
Mumps	072	2	2	1	2	2	3	5	8	8	6
Pertussis (whooping cough)	033	5	4	6	11	6	6	10	7	8	14
Plague	020	5	3	3	5	2	-	-	2	3	1
Poliomyelitis	045.0-045.9	-	-	-	6	4	13	16	16	9	3
Bulbar or polioencephalitis	045.0	-	-	-	2	1	-	2	3	2	-
With other paralysis	045.1	-	-	-	2	1	1	2	1	1	-
Non-paralytic	045.2	-	-	-	-	$\bar{\square}$	-	-	$\overline{12}$	-	-
Unspecified	045.9	-	-	-	4	3	12	12	12	6	3
Psittacosis (omithosis)	073	1	-	-	-	-	1	-	\cdots	-	-
Rabies	071	2	77	1	-	4	2	-	1	2	175
Rheumatic fever, acute	390-392	87	77	96	109	114	138	125	149	155	175
Rubella (German measles)	1056	3	4	5	1	1	10	17	12	21	15
Salmonellosis, including paratyphoid fever	002.1-002.9,003							73	61	67	59
Shigellosis	004	9	9	11	15	19	20	25	19	27	32
Syphilis	090-097	121	126	136	154	180	169	196	225	272	300
Tetanus	037	22	22	31	28	30	32	24	32	45	44
Trichinosis	124	-	-	-	1	2	-	-	1	-	-
Tuberculosis (all forms)	010-018	1.779	1,807	1,937	1.978	2.007	2,914	2.968	3,130	3.333	3.513
Tularemia	021	1	2	1	3	2	-	2	2	-	2
Typhoid fever	002.0	3	2	2	2	3	2	3	2	3	3
Typhus fever, flea-borne (endemic-murine)	081.0	-	-	-	-	-	-	-	1	-	-
Typhus fever, tick-borne (Rocky Mountain spotted)	082.0	35	40	30	38	32	30	43	41	29	49
Varicella (chickenpox)	052	57	61	84	78	103	91	89	106	83	106

- Arthropod-borne encephalitis and other non-arthropod-borne viral diseases of the central nervous system.

Source: National Center for Health Statistics, Vital Statistics of the United States, Vol. II, Part A, for 1974-1980. Unpublished final data, National Center for Health Statistics, 1981-1983
Deaths are classified according to the Eighth Revision, ICD, for 1974-1978 and according to the Ninth Revision, ICD, for 1979-1983. Discontinuities for some causes may result due to the introduction of the Ninth Revision.

TABLE 8. NON-NOTIFIABLE CONDITIONS - Deaths from selected acute conditions and violence, United States, 1974-1983
(Numbers in ICD column refer to the category numbers listed in the Ninth Revision of the International Classification of Diseases, 1975)

Cause of Death	ICD	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974
Abortion											
Septic	634.0.635.0.636.0										
	$637.0,638.0$	2	2	5	4	3	10	4	10	15	14
Non-septic	634.1-634.9.635.1-635.9,										
	$636.1-636.9 .637 .1-637.9$ $638.1-638.9$	10	9	7	9	13	6	16	6	12	13
Alcoholic dependence syndrome and alcoholic psychosis	291,303	4.348	4.303	4,660	4.804	4.517	5,662	5.418	5,193	5,253	5.379
Chronic liver disease and cirrhosis, alcoholic	571.0-571.3	11.076	11.293	12.085	12,938	12,547	12,828	13,029	13.289	12,932	13.151
Diabetes mellitus	250	36.246	34.583	34,642	34,851	33.192	33,841	32.989	34,508	35,230	37.329
Fungal infections											
Actinomycotic infections	039	47	46	55	45	47	15	12	11	9	9
Aspergillosis	117.3	137	131	114	79	84	98	112	66	63	50
Blastomycosis and paracoccidioidomycosis	116.0-116.1	16	28	33	25	17	2	2	2	2	1
Coccidioidomycosis	114	56	64	68	59	63	78	58	66	60	61
Cryptococcosis	117.5	166	126	129	112	105	146	134	123	131	122
Histoplasmosis	115	46	48	53	51	33	56	55	49	59	58
Candidiasis (moniliasis)	112	424	337	296	233	213	240	237	244	215	190
Giardiasis	007.1	-	-	2	2	1	-	-	1	-	1
Herpes zoster	053	161	168	174	181	146	133	136	113	132	112
Hydatid disease (Echinococcosis)	122	1	1	3	4	2	3	2	4	3	5
Meningitis, excluding meningococcal and tuberculous	320-322	1.287	1,282	1,405	1,415	1,393	1,560	1,526	1.589	1,630	1.539
Mononucleosis, infectious	075	15	15	16	23	13	17	13	18	11	24
Renal disease	403.580-589.590-593	28.043	27.025	26.344	26.479	25.243	23.663	23,744	24.096	23,634	24.769
Respiratory infections											
Bronchitis (acute bronchitis \& bronchiolitis)	466	552	503	573	642	554	756	697	854	737	750
Influenza	487	1.431	727	3.006	2.702	604	4.052	1,304	7.877	4.277	2.201
Pneumonia (primary cause of death)	480-486	54.423	48,159	50.725	51,917	44.426	54,267	49.889	53,989	51,387	52,576
Upper respiratory infections, acute	460-465	365	319	394	392	397	321	368	384	342	377
Rheumatoid arthritis and other inflammatory polyarthropathies, rheumatism unsp. and fibrositis	714.0-714.4.729.0	1.403	1,460	1.339	1.410	1,280	1,308	1,396	1,343	1,311	1,356
Sepsis of childbirth	646.6.670	9	9	8	12	12	13	13	16	11	17
Streptococcal sore throat and scarlatina	034	5	9	7	5	14	5	14	14	15	22
Toxoplasmosis	130	36	20	8	4	6	13	19	13	11	13
Homicide and legal intervention	E960-E978	20.191	22,358	23,646	24.278	22.550	20.432	19,968	19.554	21,310	21.465
Suicide	E950-E959	28,295	28,242	27.596	26,869	27.206	27,294	28,681	26,832	27,063	25,683

Source: National Center for Health Statistics. Vital Statistics of the United States, Vol. II, Part A, for 1974-1980. Unpublished final data, National Center for Health Statistics, 1981 -1983.
Deaths are classified according to the Eighth Revision, ICD, for 1974-1978 and according to the Ninth Revision, ICD, for 1979-1983. Discontinuities for some causes may result due to the introduction of the Ninth Revision

INDEX

A

Abortion 131
Accidents see Injuries
Acquired immunodeficiency syndrome $\times, 3,4,15,16,124$
Actinomycosis 80,131
Aedes aegyptisee Dengue
AIDS
see Acquired immunodeficiency syndrome
Alcoholic dependence syndrome 131
Amebiasis 3,4,124-130
Anencephaly 83
Anthrax 3,4,124-130
Arboviruses
see Encephalitis
Arthritis, rheumatoid 131
Aseptic meningitis 3,4,19,124-127
Aspergillosis 131

B

Bacterial meningitis 79
Blastomycosis 80,131
Botulism
foodborne 3,4,20,124,125,130
infant 3,4,21,124,125
unspecified 4
wound 4
Bronchitis, acute 131
Brucellosis 3,4,22,124-130

C

Cancer 97,99,118-120
Candidiasis 131
Cardiovascular diseases
see Heart, diseases of
Cerebrovascular diseases 118-120
Chancroid $x, 5,124-130$
Chickenpox
see Varicella
Childbirth, sepsis of 131
Cholera $x, 3,5,10$
Cirrhosis of liver 119,120,131
Cleft lip 83
Cleft palate 83

Clubfoot 84

Coccidioidomycosis 80,131
Colorado tick fever 80
Condylomata acuminata $\mathrm{x}, 81$
Congenital malformations
x,82-84,118-120
Cryptococcosis 80,131

D

Data sources x
Deaths
non-notifiable conditions 131
pneumonia-influenza 131
specified notifiable diseases 130
Dengue $\mathrm{x}, 85,86$
Dermatologic conditions 97,104
Diabetes mellitus 118-120,131
Diphtheria 3,5,10,23,124-130
Down syndrome 84

E

Encephalitis
arthropod-borne $\times, 3,5,17,18$
indeterminate 124,125
post-childhood infections 3,5,124-126
primary, infectious 3,5,17,18,124-130

F

Fluoridation x ,87-89
Fungal infections 80,131

G

Genital herpes $\times, 90$
Genital warts
see Condylomata acuminata
German measles
see Rubella
Giardiasis 79,131
Gonorrhea $x, 3,5,10,24-26,124-130$
Granuloma inguinale $\times, 5,124-130$

H

Hearing loss $97,102,103$
Heart, diseases of 97,118-120

Hepatitis
A (infectious) 3,6,10,27,28,124-130
B (serum) 3,6,10,27,28,124-127,130
non-A, non-B 3,6,10,27,28,124,125
unspecified 3,6,10,27,124-126
Herpes zoster 131
Histoplasmosis 79,131
Historical development
see Surveillance
Homicide x,91-93,118-120
Hydrocephalus 83
Hypospadias 84

I

Influenza x,94-96,113,118-120,131
Injuries 97,98,100,118-120
L
Lead, inorganic 101
Legionellosis 3,6,29,124,125
Leprosy 3,6,30,124-130
Leptospirosis 3,6,31,124-130
Liver diseases, chronic 118-120
Lung diseases
see Pulmonary diseases,
chronic obstructive
Lymphogranuloma venereum $x, 6,124-130$

M

Malaria 3,6,32,124-130
Malignancies
see Cancer
Measles 3,7,10,33-37,114-120,124-130
Meningitis 79,131
Meningococcal infections 3,7,10,38
124-130
Moniliasis
see Candidiasis
Mononucleosis, infectious 79,131
Mumps 3,7,10,39-41,114-116,120, 124-126,130

N

Neurotoxic disorders 97,100
Nocardiosis 80
Nutrition, pediatric, x,105-107

Occupational hazards x,97-104

P

Patent ductus arteriosus 83
Pelvic inflammatory disease $\times, 108,10$?
Penicillinase-producing Neisseria gonorrhoeae
Pertussis 3,7,10,42-44,124-130
PID
see Pelvic inflammatory disease
Plague $\times, 3,7,10,45,124-130$
Pneumonia 94,96,118-120,131
Poliomyelitis 3,7,10,46,47,124-130
Population
estimates xi,4,11,124-129
PPNG
see Penicillinase-producing
Neisseria gonorrhoeae
Psittacosis 3,7,48,124-130
Psychologic disorders 97
Pulmonary diseases, chronic
obstructive 97,98,118-120

0

Q fever 80
Quarantinable diseases 3,5,7,10,124-130

R

Rabies
animal $x, 8,49,50,124-129$
human $x, 3,8,49,124-130$
Rectal atresia and stenosis 84
Reduction deformity 84
Refugees $\mathrm{x}, 1$ 10-112
Renal agenesis 84
Reproductive disorders 97
Respirators 104
Respiratory infections 131
Reye syndrome $x, 79,113$
Rheumatic fever 3,8,124-127,130
Rheumatoid arthritis 131
Rocky Mountain spotted fever see Typhus fever
Rubella 3,8,10,51-54,124-126,130

Rubella, congenital syndrome 3,8,54, 124-126
Rubeola
see Measles

S

Salmonella isolations 55
Salmonellosis 3,8,10,55,56,124-130
Sepsis
abortion 131
childbirth 131
Shigella isolations 56
Shigellosis 3,8,10,56,124-130
Smallpox 124-129
Spina bifida 83
Streptococcal sore throat 79,126-129,131
Suicide x , 114-117
Surveillance, historical development ix
Syphilis
congenital x,59,60
primary and secondary $x, 3,8,10$, 57-59,124-129 total, all stages $\mathrm{x}, 8,124-130$

T

Tetanus 3,9,10,61,62,124-130
Toxic-shock syndrome
x,3,9,63,64,124,125

Toxoplasmosis 79,131
Tracheo-esophageal fistula 84
Trachoma 80
Trichinosis 3,9,65,124-130
Tuberculosis $\mathrm{x}, 9,10,66-68,112,124-130$
Tularemia 3,9,69,124-130
Typhoid fever 3,9,10,70,124-130
Typhus fever
flea-borne (murine) 3,9,71,
124-130
tick-borne (Rocky Mountain
spotted) 3,9,72,73,124-130
U
Undulant fever
see Brucellosis

V

Varicella 3,9,74,75,113,124-126,130
Ventricular septal defect 83
W
Whooping cough
see Pertussis
Y
Years of potential life lost $x, 118-120$
Yellow fever 124-129

State and Territorial Epidemiologists and State Laboratory Directors

The contributions of the State and Territorial Epidemiologists and the State Laboratory Directors to this report are gratefully acknowledged. The persons listed were in the positions shown as of March 1, 1986.

State
Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
lowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York State
New York City
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Guam
Ponape*
Marshall Islands
Northern Mariana Is.*
American Samoa
Palau*
Puerto Rico
Virgin Islands

Epidemiologists

Wallace E. Birch, DVM
John P. Middaugh, MD
Glyn G. Caldwell, MD
Thomas C. McChesney, DVM
James Chin, MD
Stanley W. Ferguson, PhD
James L. Hadler, MD, MPH
Paul R. Silverman, DrPH
Martin E. Levy, MD
E. Chariton Prather, MD
R. Keith Sikes, DVM

Arthur P. Liang, MD, MPH
Charles D. Brokopp, DrPH
Byron J. Francis, MD
Charles L. Barrett, MD
Laverne A. Wintermeyer, MD
Robert French, Acting
M. Ward Hinds, MD

Joyce B. Mathison, MD
Kathleen F. Gensheimer, MD
Ebenezer Israel, MD
George F. Grady, MD
Kenneth R. Wilcox, Jr., MD
Michael Osterholm, PhD, MPH
Fred E. Thompson, MD
H. Denny Donnell, Jr., MD

Judith K. Gedrose, RN
Paul A. Stoesz, MD
George E. Reynolds, MD, Acting
Eugene Schwartz, MD
William E. Parkin, DVM
Harry F. Hull, MD
Dale Morse, MD
Stephen Schultz, MD
J.N. MacCormack, MD

James L. Pearson, DrPH
Thomas J. Halpin, MD, MPH
Gregory R. Istre, MD
Laurence Foster, MD, MPH
Ernest J. Witte, VMD
Richard A. Keenlyside, MBBS
Richard L. Parker, DVM
Kenneth A. Senger
Robert H. Hutcheson, Jr., MD
Charles E. Alexander, MD
Craig R. Nichols, MPA
Richard L. Vogt, MD
Grayson B. Miller, Jr., MD
John M. Kobayashi, MD
Loretta E. Haddy, MS
Jeffrey P. Davis, MD
Harry C. Crawford, MD
Robert L. Haddock, DVM
Eliuel K. Pretrick, MO
Isao Kisino
Jose T. Villagomez, MO
Julia L. Lyons, MD, MPH
Anthony H. Polloi, MO, Acting
Jose G. Rigau, MD
John N. Lewis, MD

Laboratory Directors

James L. Holston, Jr., DrPH
Harry J. Colvin, PhD
Jon M. Counts, DrPH
Robert L. Horn
G. W. Fuhs, DrSc

Ronald L. Cada, DrPH
Jesse Tucker, PhD
Mahadeo P. Verma, PhD
James B. Thomas, DSc
Eldert C. Hartwig, ScD
Frank M. Rumph, MD
Robert Katasse, MD
D. W. Brock, DrPH

Harry C. Bostick
T. L. Eddleman
W. J. Hausler, Jr., PhD

Roger H. Carlson, PhD
B. F. Brown, MD

Henry Bradford, PhD
Philip W. Haines, DrPH
J. Mehsen Joseph, PhD

George F. Grady, MD
George R. Anderson, DVM
Harold Markowitz, PhD, MD
R. H. Andrews, MPH

Elmer R. Spurrier, DrPH
Douglas Abbott, PhD
John Blosser
George Reynolds, MD
Veronica C. Malmberg
Bernard F. Taylor, PhD
Loris W. Hughes, PhD
David O. Carpenter, MD
Bernard Davidow, PhD, Acting
Mildred A. Kerbaugh
Jane S. Robb, Acting
Gary D. Davidson, DrPH
Garry L. McKee, PhD
Michael R. Skeels, PhD
Vern Pidcoe, DrPH
Raymond G. Lundgren, Jr., PhD
Arthur F. DiSalvo, MD
A. Richard Melton, DrPH

Michael W. Kimberly, DrPH
Charles E. Sweet, DrPH
Francis M. Urry, PhD
Katherine A. Kelley, DrPH
Frank W. Lambert, Jr., DrPH
Jack Allard, PhD
John W. Brough, DrPH
Ronald H. Laessig, PhD
Donald T. Lee, DrPH
Luis P. Flores
Vacant
Vacant
Vacant
Vacant
Vacant
Jose L. Villamil, PhD
Norbert Mantor, PhD

HEALTH \& HUMAN SERVICES

DEPARTMENT OF
Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penaliv for Private Use $\$ 300$

BULK RATE
POSTAGE \& FEES PAID
PHS / CDC
Permit No. G 284

S *HCRH NEWV75 8129
OR VERNE F NEWHOUSE
yirclogy
CID
7-B14

[^0]: -Civilian cases only.

[^1]: *For measles only, imported includes both out-of-state and international importations.

[^2]: -Includes 260 imported cases.

[^3]: *Reported as of June 30, 1985. Does not include 66 cases diagnosed prior to 1981. Of those, 56 are known dead.

[^4]: *A case is considered preventable if measles occurs in a U.S. citizen who is 1) at least 16 months of age; 2) born after 1956; 3) lacking adequate evidence of immunity to measles (documented receipt of live measles vaccine on or after the first birthday, physician-diagnosed measles, or laboratory evidence of immunity); 4) without a medical contraindication to receiving vaccine; and 5) with no religious or philosophic exemption under state law.

[^5]: 'Reported number of cases per 100,000 population, extrapolated from the age distribution of cases with known age.

[^6]: -A case is defined as vaccine-associated when contact with an OPV recipient occurs within 30 days before onset of illness, and onset of illness occurs 4-60 days after administration of OPV to recipient.

[^7]: *Rates were calculated by multiplying the percentage of cases with known age group by total reported cases and dividing by the population in that age group.

[^8]: -Cases reported to the MMWR have been reclassified by date of birth rather than date of report and stratified into confirmed and compatible cases. Annual totals may change as a result of delayed diagnosis and reporting. (CDC. Rubella and congenital rubella-United States, 1983; MMWR 1984;33: 237-42,247).

[^9]: *Case data for years subsequent to 1974 are not comparable to those for prior years because of changes in reporting criteria that became effective in 1975.
 ${ }^{\dagger}$ Mortality data subsequent to 1978 are not comparable to those for prior years because of changes in classification that became effective in 1979. Late effects of tuberculosis (e.g., bronchiectasis or fibrosis) and pleurisy with effusion (without mention of cause) are no longer included in tuberculosis deaths.

[^10]: ${ }^{\circ}$ Cases reported by surveillance program for the period December 1,1983-November 30,1984. Total includes 7 unknown.
 $\dagger_{\text {Includes New York City. }}$

[^11]: -Discharge data reported by participating hospitals through the Commission on Professional and Hospital Activities, Ann Arbor, Michigan
 ${ }^{\dagger}$ Per 10,000 total births.
 $\xi_{\text {Includes Puerto Rico. }}$

[^12]: - Discharge data reported by participating hospitals through the Commission on Professional and Hospital Activities, Ann Arbor, Michigan.
 ${ }^{\dagger}$ Per 10,000 total births.
 § Includes Puerto Rico.
 TRates per 10,000 male births.

[^13]: ${ }^{\bullet}$ CDC. Leading work-related diseases and injuries-United States. MMWR 1983;32:25-6, 32.

[^14]: "The decibel is a logarithmic measure of sound intensity; the "A-weighted scale" is used to weigh the various frequency components of the noise to approximate the response of the human ear.

[^15]: - National Center for Health Statistics, NCHS growth curves for children, birth-18 years, United States. Rockville, Md., National Center for Health Statistics, 1977. (Vital and health statistics, Series II, Data from the National Health Survey, No. 165).

[^16]: -Centers for Disease Control. Reference curves for anemia screening. Atlanta, Ga.: CDC, 1982. (Nutrition Surveillance Annual Summary 1980) (HHS Publication No. CDC 78-8295).

[^17]: †Total does not equal 610,439 because of unknown or missing data for some variables and the exclusion of states with date errors
 $\S_{\text {Data for Asians include data from an unknown number of recent Southeast Asian refugees. }}^{\text {In }}$.
 $\S_{\text {Insufficient data. }}$

[^18]: - Percentage change in the rate of YPLL per 1,000 persons from 1 through 64 years of age is calculated for cause as $\frac{(1983 \text { rate }-1982 \text { rate } \times 100}{1982 \text { rate }}$. Thus, positive values indicate larger rates in 1983, and vice versa.
 ${ }^{\dagger}$ Chronic obstructive pulmonary disease.

[^19]: - Not previously notifiable nationally
 ${ }^{\boldsymbol{t}}$ includes Meningitis, other, for some states
 ${ }^{\$}$ Registered deaths, 1955-1960.
 Includes new active cases

